A183137 a(n) = [1/s] + [2/s] + ... + [n/s], where s = (golden ratio)^2 = (3+sqrt(5))/2 and [] = floor.
0, 0, 1, 2, 3, 5, 7, 10, 13, 16, 20, 24, 28, 33, 38, 44, 50, 56, 63, 70, 78, 86, 94, 103, 112, 121, 131, 141, 152, 163, 174, 186, 198, 210, 223, 236, 250, 264, 278, 293, 308, 324, 340, 356, 373, 390, 407, 425, 443, 462, 481, 500, 520, 540, 561, 582, 603, 625
Offset: 1
Keywords
Examples
a(7) = 7 = 0+0+1+1+1+2+2.
Links
- Johan Kok, Integer sequences with conjectured relation with certain graph parameters of the family of linear Jaco graphs, arXiv:2507.16500 [math.CO], 2025. See p. 4.
Programs
-
Mathematica
Accumulate[With[{c=GoldenRatio^2},Floor[Range[60]/c]]] (* Harvey P. Dale, Apr 20 2011 *)
Formula
a(n+1) = a(n) + n - A005206(n). - John Furey, Jun 03 2015
Comments