cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183159 The number of partial isometries (of an n-chain) of fix zero (fix of alpha = 0). Equivalently, the number of partial derangement isometries (of an n-chain).

Original entry on oeis.org

1, 1, 4, 12, 38, 90, 220, 460, 1018, 2022, 4304, 8376, 17566, 33922, 70756, 136260, 283682, 545790, 1135576, 2184112, 4543366, 8737626, 18174764, 34951932, 72700618, 139809430, 290804320, 559239720, 1163219438
Offset: 0

Views

Author

Abdullahi Umar, Dec 28 2010

Keywords

Examples

			a(2) = 4 because there are exactly 4 partial derangement isometries (on a 2-chain) , namely: empty map; 1-->2; 2-->1; (1,2)-->(2,1). a(3) = 12 because there are exactly 12 partial isometries (on a 3-chain) namely: empty map; 1-->2; 1-->3; 2-->1; 2-->3; 3-->1; 3-->2; (1,2)-->(2,1); (1,2)-->(2,3); (2,3)-->(1,2); (2,3)-->(3,2); (1,3)-->(3,1) - the mappings are coordinate-wise.
		

Crossrefs

Cf. A183158.

Programs

  • Maple
    A183159 := proc(n) nh := floor(n/2) ; if type(n,'even') then 13*4^nh-12*nh^2-18*nh-10; else 25*4^nh-12*nh^2-30*nh-22; end if; %/3 ; end proc:
    seq(A183159(n),n=0..50) ; # R. J. Mathar, Jan 06 2011
  • Mathematica
    LinearRecurrence[{3,1,-11,12,-4},{1,1,4,12,38},30] (* Harvey P. Dale, Dec 06 2015 *)
    a[n_] := (51*2^n+(-2)^n-40)/12-n*(n+3); Array[a, 29, 0] (* Jean-François Alcover, Nov 22 2017 *)

Formula

a(2n) = (13*4^n-12*n^2-18*n-10)/3, n>=0.
a(2n+1) = (25*4^n-12*n^2-30*n-22)/3, n>=0.
a(n) = A183158(n,0).
G.f.: ( 1-2*x-3*x^4+10*x^3 ) / ( (2*x-1)*(2*x+1)*(x-1)^3 ). - Joerg Arndt, Dec 30 2010
a(n) = (51*2^n+(-2)^n-40)/12-n*(n+3). - Jean-François Alcover, Nov 22 2017