cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183162 Least integer k such that floor(k*sqrt(n+1)) > k*sqrt(n).

Original entry on oeis.org

1, 3, 2, 1, 5, 3, 2, 3, 1, 7, 4, 3, 2, 3, 4, 1, 9, 5, 3, 5, 2, 3, 4, 5, 1, 11, 6, 4, 3, 5, 2, 5, 3, 4, 6, 1, 13, 7, 5, 4, 3, 7, 2, 5, 3, 4, 5, 7, 1, 15, 8, 5, 4, 3, 5, 7, 2, 5, 3, 7, 4, 6, 8, 1, 17, 9, 6, 5, 4, 3, 5, 7, 2, 5, 8, 3, 4, 5, 6, 9, 1, 19, 10, 7, 5, 4, 7, 3, 5, 9
Offset: 0

Views

Author

Clark Kimberling, Dec 27 2010

Keywords

Comments

a(n) is the least positive integer k such that one of the following holds:
(1) there is an integer J such that n*k^2 < J^2 < (n+1)*k^2; or
(2) there is an integer J such that (n+1)*k^2 = J^2.
Note that (1) is equivalent to the existence of a rational number H with denominator k such that n < H^2 < n+1.
Positions of 1: A005563.
Positions of 2: 2*A000217.
Positions of 2n+1: A000290.

Examples

			The results are easily read from an array of k*sqrt(n),
represented here by approximations:
1.00 1.41 1.73 2.00 2.24 2.45 2.65
2.00 2.83 3.46 4.00 4.47 4.90 5.29
3.00 4.24 5.20 6.00 6.71 7.35 7.94
4.00 5.66 6.93 8.00 8.94 9.80 10.58
		

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[Floor[k Sqrt[n + 1]] <= k Sqrt@ n, k++]; k, {n, 120}] (* Michael De Vlieger, Aug 14 2016 *)
  • PARI
    a(n) = my(k = 1); while(floor(k*sqrt(n+1)) <= k*sqrt(n), k++); k; \\ Michel Marcus, Oct 07 2017

Extensions

Added a(0)=1 and changed b-file by N. J. A. Sloane, Aug 16 2016