cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A077777 Numbers k such that 7*(10^k - 1)/9 - 5*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).

Original entry on oeis.org

3, 7, 15, 21, 25, 961, 1899, 3891, 15097, 17847
Offset: 1

Views

Author

Patrick De Geest, Nov 16 2002

Keywords

Comments

Prime versus probable prime status and proofs are given in the author's table.
a(11) > 2*10^5. - Robert Price, Nov 02 2015
A183178(1) = 0 would correspond to an initial term 1 in this sequence which yields the prime 2 (which has a "wing" of length 0 and is a palindrome and repdigit but not near-repdigit). - M. F. Hasler, Feb 08 2020

Examples

			15 is a term because 7*(10^15 - 1)/9 - 5*10^7 = 777777727777777.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[(7*10^n - 45*10^Floor[n/2] - 7)/9], Print[n]], {n, 3, 1000, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
  • PARI
    for(k=1,oo,ispseudoprime(10^k\9*7-5*10^(k\2))&&print1(k",")) \\ M. F. Hasler, Feb 08 2020

Formula

a(n) = 2*A183178(n+1) + 1.

Extensions

Name corrected by Jon E. Schoenfield, Oct 31 2018

A332172 a(n) = 7*(10^(2n+1)-1)/9 - 5*10^n.

Original entry on oeis.org

2, 727, 77277, 7772777, 777727777, 77777277777, 7777772777777, 777777727777777, 77777777277777777, 7777777772777777777, 777777777727777777777, 77777777777277777777777, 7777777777772777777777777, 777777777777727777777777777, 77777777777777277777777777777, 7777777777777772777777777777777
Offset: 0

Views

Author

M. F. Hasler, Feb 06 2020

Keywords

Comments

Indices of prime terms: {0, 1, 3, 7, 10, 12, 480, 949, ...} = A183178.

Crossrefs

Cf. A138148 (cyclops numbers with binary digits only).
Cf. A332171 (analog with middle digit 1).
Cf. (A077777-1)/2 = A183178: indices of primes.
Cf. A002275 (repunits R_n = [10^n/9]), A002281 (7*R_n), A011557 (10^n).
Cf. A332171 .. A332179 (variants with different middle digit 1, ..., 9).

Programs

  • Maple
    A332172 := n -> 7*(10^(n*2+1)-1)/9 -5*10^n;
  • Mathematica
    Array[7 (10^(2 # +1)-1)/9 -5*10^# &, 15, 0]
  • PARI
    apply( {A332172(n)=10^(n*2+1)\9*7-5*10^n}, [0..25])
    
  • Python
    def A332172(n): return 10**(n*2+1)//9*7-5*10^n

Formula

a(n) = 7*A138148(n) + 2*10^n.
G.f.: (2 + 505*x - 1200*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>2.
Showing 1-2 of 2 results.