A077777 Numbers k such that 7*(10^k - 1)/9 - 5*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
3, 7, 15, 21, 25, 961, 1899, 3891, 15097, 17847
Offset: 1
Examples
15 is a term because 7*(10^15 - 1)/9 - 5*10^7 = 777777727777777.
References
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
Links
- Patrick De Geest, World!Of Numbers, Palindromic Wing Primes (PWP's)
- Makoto Kamada, Prime numbers of the form 77...77277...77
- Index entries for primes involving repunits.
Crossrefs
Programs
-
Mathematica
Do[ If[ PrimeQ[(7*10^n - 45*10^Floor[n/2] - 7)/9], Print[n]], {n, 3, 1000, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
-
PARI
for(k=1,oo,ispseudoprime(10^k\9*7-5*10^(k\2))&&print1(k",")) \\ M. F. Hasler, Feb 08 2020
Formula
a(n) = 2*A183178(n+1) + 1.
Extensions
Name corrected by Jon E. Schoenfield, Oct 31 2018
Comments