cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A077788 Numbers k such that 7*(10^k - 1)/9 - 10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).

Original entry on oeis.org

9, 11, 17, 23, 2489, 3371, 4019, 29315, 30237, 40665, 101661, 150125
Offset: 1

Views

Author

Patrick De Geest, Nov 16 2002

Keywords

Comments

Prime versus probable prime status and proofs are given in the author's table.

Examples

			11 is a term because 7*(10^11 - 1)/9 - 10^5 = 77777677777.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[(7*10^n - 9*10^Floor[n/2] - 7)/9], Print[n]], {n, 3, 30300, 2}] (* Robert G. Wilson v, Dec 16 2005 *)

Formula

a(n) = 2*A183181(n) + 1.

Extensions

Name corrected by Jon E. Schoenfield, Oct 31 2018
a(10) from Robert Price, Oct 07 2023
a(11) from Robert Price, Oct 17 2023
a(12) from Robert Price, Dec 06 2023

A332176 a(n) = 7*(10^(2n+1)-1)/9 - 10^n.

Original entry on oeis.org

6, 767, 77677, 7776777, 777767777, 77777677777, 7777776777777, 777777767777777, 77777777677777777, 7777777776777777777, 777777777767777777777, 77777777777677777777777, 7777777777776777777777777, 777777777777767777777777777, 77777777777777677777777777777, 7777777777777776777777777777777
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Comments

See A183181 = {4, 5, 8, 11, 1244, 1685, ...} for the indices of primes.

Crossrefs

Cf. A138148 (cyclops numbers with binary digits only).
Cf. (A077788-1)/2 = A183181: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002281 (7*R_n), A011557 (10^n).
Cf. A332171 .. A332179 (variants with different middle digit 1, ..., 9).

Programs

  • Maple
    A332176 := n -> 7*(10^(n*2+1)-1)/9 - 10^n;
  • Mathematica
    Array[7 (10^(2 # + 1) - 1)/9 - 10^# &, 15, 0]
  • PARI
    apply( {A332176(n)=10^(n*2+1)\9*7-10^n}, [0..15])
    
  • Python
    def A332176(n): return 10**(n*2+1)//9*7-10^n

Formula

a(n) = 7*A138148(n) + 6*10^n.
G.f.: (6 + 101*x - 800*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
Showing 1-2 of 2 results.