cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A360963 Triangle T(n, k), n > 0, k = 0..n-1, read by rows: T(n, k) is the least e > 0 such that the binary expansions of n^e and k^e have different lengths.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3
Offset: 1

Views

Author

Rémy Sigrist, Feb 27 2023

Keywords

Comments

Leading zeros are ignored (and 0 is assumed to have binary length 0).

Examples

			Triangle T(n, k) begins:
  n\k | 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14
  ----+-------------------------------------------------
    1 | 1
    2 | 1  1
    3 | 1  1  2
    4 | 1  1  1  1
    5 | 1  1  1  1  4
    6 | 1  1  1  1  2  2
    7 | 1  1  1  1  2  2  3
    8 | 1  1  1  1  1  1  1  1
    9 | 1  1  1  1  1  1  1  1  6
   10 | 1  1  1  1  1  1  1  1  4  4
   11 | 1  1  1  1  1  1  1  1  3  3   3
   12 | 1  1  1  1  1  1  1  1  2  2   2   2
   13 | 1  1  1  1  1  1  1  1  2  2   2   2   3
   14 | 1  1  1  1  1  1  1  1  2  2   2   2   3   4
   15 | 1  1  1  1  1  1  1  1  2  2   2   2   3   4   6
		

Crossrefs

Programs

  • PARI
    T(n,k) = { for (e=1, oo, if (#binary(n^e) != #binary(k^e), return (e))) }

Formula

T(n, 0) = 1.
T(n, n-1) = A183200(n-1) for n > 1.
Showing 1-1 of 1 results.