cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183235 Sums of the cubes of multinomial coefficients.

Original entry on oeis.org

1, 1, 9, 244, 15833, 1980126, 428447592, 146966837193, 75263273895385, 54867365927680618, 54868847079435960134, 73030508546599681432983, 126197144644287414997433576, 277255161467330877411064074059
Offset: 0

Views

Author

Paul D. Hanna, Jan 04 2011

Keywords

Comments

Equals sums of the cubes of terms in rows of the triangle of multinomial coefficients (A036038).
Ignoring initial term, equals the logarithmic derivative of A182963.

Examples

			G.f.: A(x) = 1 + x + 9*x^2/2!^3 + 244*x^3/3!^3 + 15833*x^4/4!^3 +...
A(x) = 1/((1-x)*(1-x^2/2!^3)*(1-x^3/3!^3)*(1-x^4/4!^3)*...).
...
After the initial term a(0)=1, the next few terms are
a(1) = 1^3 = 1,
a(2) = 1^3 + 2^3 = 9,
a(3) = 1^3 + 3^3 + 6^3 = 244,
a(4) = 1^3 + 4^3 + 6^3 + 12^3 + 24^3 = 15833,
a(5) = 1^3 + 5^3 + 10^3 + 20^3 + 30^3 + 60^3 + 120^3 = 1980126, ...;
and continue with the sums of cubes of the terms in triangle A036038.
		

Crossrefs

Programs

  • PARI
    {a(n)=n!^3*polcoeff(1/prod(k=1, n, 1-x^k/k!^3 +x*O(x^n)), n)}

Formula

G.f.: Sum_{n>=0} a(n)*x^n/n!^3 = Product_{n>=1} 1/(1 - x^n/n!^3).
a(n) ~ c * (n!)^3, where c = Product_{k>=2} 1/(1-1/(k!)^3) = 1.14825648754771664323845829539510031170864046029463094659207423270573478812675... . - Vaclav Kotesovec, Feb 19 2015

Extensions

Examples added and name changed by Paul D. Hanna, Jan 05 2011