cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183236 Sums of multinomial coefficients to the 4th power.

Original entry on oeis.org

1, 1, 17, 1378, 354065, 221300626, 286871431922, 688780254549829, 2821284379712638737, 18510450092641988146882, 185104666826030540618018642, 2710117456989714966261367339909, 56196998736058707145628074314226034
Offset: 0

Views

Author

Paul D. Hanna, Jan 04 2011

Keywords

Comments

Equals sums of the 4th power of terms in rows of the triangle of multinomial coefficients (A036038).

Examples

			G.f.: A(x) = 1 + x + 17*x^2/2!^4 + 1378*x^3/3!^4 + 354065*x^4/4!^4 +...
A(x) = 1/((1-x)*(1-x^2/2!^4)*(1-x^3/3!^4)*(1-x^4/4!^4)*...).
		

Crossrefs

Programs

  • PARI
    {a(n)=n!^4*polcoeff(1/prod(k=1, n, 1-x^k/k!^4 +x*O(x^n)), n)}

Formula

G.f.: Sum_{n>=0} a(n)*x^n/n!^4 = Product_{n>=1} 1/(1 - x^n/n!^4).
a(n) ~ c * (n!)^4, where c = Product_{k>=2} 1/(1-1/(k!)^4) = 1.067493570155257423039762074691753715853526744464586468822554194836450214299287... . - Vaclav Kotesovec, Feb 19 2015