A183244 T(n,k) = Number of permutations of 1..n+2*k-1 with each element displaced by at least k.
1, 1, 2, 1, 4, 9, 1, 8, 29, 44, 1, 16, 112, 206, 265, 1, 32, 436, 1168, 1708, 1854, 1, 64, 1708, 6984, 13365, 15702, 14833, 1, 128, 6724, 41808, 114124, 159414, 159737, 133496, 1, 256, 26572, 250464, 998112, 1799688, 2036488, 1780696, 1334961, 1, 512
Offset: 1
Examples
All permutations of 1-5 with minimum displacement 2: (3,4,5,1,2) (3,4,5,2,1) (4,5,1,2,3) (5,4,1,2,3).
Links
- R. H. Hardin, Table of n, a(n) for n = 1..201
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Permanent[nrows = n+2k-1; Table[If[Abs[i-j] <= k-1, 0, 1], {i, 1, nrows}, {j, 1, nrows}]]; Table[t = T[n-k+1, k]; Print[ "T(", n-k+1, ",", k, ") = ", t]; t, {n, 1, 9}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 07 2016, adapted from Sage *)
-
Sage
def A183244_T(n,k): return Matrix(lambda i,j: 0 if abs(i-j) <= (k-1) else 1, nrows=n+2*k-1).permanent() # D. S. McNeil, Jan 04 2011
Comments