cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183244 T(n,k) = Number of permutations of 1..n+2*k-1 with each element displaced by at least k.

Original entry on oeis.org

1, 1, 2, 1, 4, 9, 1, 8, 29, 44, 1, 16, 112, 206, 265, 1, 32, 436, 1168, 1708, 1854, 1, 64, 1708, 6984, 13365, 15702, 14833, 1, 128, 6724, 41808, 114124, 159414, 159737, 133496, 1, 256, 26572, 250464, 998112, 1799688, 2036488, 1780696, 1334961, 1, 512
Offset: 1

Views

Author

R. H. Hardin, Jan 03 2011

Keywords

Comments

Table starts
........1.........1..........1............1.............1...............1
........2.........4..........8...........16............32..............64
........9........29........112..........436..........1708............6724
.......44.......206.......1168.........6984.........41808..........250464
......265......1708......13365.......114124........998112.........8751552
.....1854.....15702.....159414......1799688......21201024.......252813312
....14833....159737....2036488.....29125117.....441629332......6860776320
...133496...1780696...27780408....486980182....9154333160....178195229760
..1334961..21599745..404351752...8490078104..192565379941...4564491262444
.14684570.283294740.6263006598.154750897552.4146526612518.116967725946488

Examples

			All permutations of 1-5 with minimum displacement 2:
(3,4,5,1,2) (3,4,5,2,1) (4,5,1,2,3) (5,4,1,2,3).
		

Crossrefs

Column 1 is A000166(n+1).
Column 2 is A001883(n+3).
Column 3 is A075851(n+5).
Column 4 is A075852(n+7).

Programs

  • Mathematica
    T[n_, k_] := Permanent[nrows = n+2k-1; Table[If[Abs[i-j] <= k-1, 0, 1], {i, 1, nrows}, {j, 1, nrows}]]; Table[t = T[n-k+1, k]; Print[ "T(", n-k+1, ",", k, ") = ", t]; t, {n, 1, 9}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 07 2016, adapted from Sage *)
  • Sage
    def A183244_T(n,k):
        return Matrix(lambda i,j: 0 if abs(i-j) <= (k-1) else 1, nrows=n+2*k-1).permanent() # D. S. McNeil, Jan 04 2011