A183270 T(n,k) is the number of singly defective permutations of 1..n+2*k-2 with exactly k maxima.
0, 3, 2, 120, 80, 15, 4760, 3552, 860, 64, 249984, 199168, 57064, 6576, 220, 17512704, 14548480, 4643712, 681984, 42112, 672, 1599330304, 1367568384, 469942528, 80506880, 6849792, 242688, 1904, 185616337920, 162107703296, 58754129408
Offset: 1
Examples
Table starts: 0 3 120 4760 249984 17512704 1599330304 ... 2 80 3552 199168 14548480 1367568384 ... 15 860 57064 4643712 469942528 ... 64 6576 681984 80506880 ... 220 42112 6849792 ... 672 242688 ... 1904 ... ... Some solutions for n=4 with 2 maxima: (6,1,4,4,3,2) (4,3,1,5,6,6) (4,2,1,2,3,5) (3,2,1,6,4,3) (5,5,6,1,2,3).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (terms 1..36 from R. H. Hardin)
Crossrefs
Programs
-
PARI
\\ PeaksBySig defined in A334774. T(n,k) = {my(m=n+2*k-3); (m+1)*sum(i=1, m, PeaksBySig(vector(m,j,if(i==j,2,1)), [k-1])[1])} \\ Andrew Howroyd, May 12 2020
Formula
A001804(n) = Sum_{k=1..2*n+1} T(n+2-2*k, k). - Andrew Howroyd, May 12 2020
Comments