cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A183312 T(n,k) = Half the number of n X k binary arrays with no element equal to a strict majority of its horizontal and vertical neighbors.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 2, 4, 4, 2, 3, 6, 9, 6, 3, 5, 9, 19, 19, 9, 5, 8, 14, 42, 55, 42, 14, 8, 13, 22, 93, 178, 178, 93, 22, 13, 21, 35, 205, 572, 910, 572, 205, 35, 21, 34, 56, 452, 1798, 4212, 4212, 1798, 452, 56, 34, 55, 90, 997, 5700, 19899, 29400, 19899, 5700, 997, 90, 55, 89
Offset: 1

Views

Author

R. H. Hardin, Jan 03 2011

Keywords

Comments

Same solutions for no element unequal to a strict majority of its horizontal and vertical neighbors, via xor with a 0101... checkerboard pattern.
Table starts
..1..1....1.....2.......3........5..........8..........13............21
..1..3....4.....6.......9.......14.........22..........35............56
..1..4....9....19......42.......93........205.........452...........997
..2..6...19....55.....178......572.......1798........5700.........18064
..3..9...42...178.....910.....4212......19899.......94217........445859
..5.14...93...572....4212....29400.....206755.....1447110......10149621
..8.22..205..1798...19899...206755....2160250....22504107.....234636215
.13.35..452..5700...94217..1447110...22504107...348871589....5406312318
.21.56..997.18064..445859.10149621..234636215..5406312318..124597748299
.34.90.2199.57249.2113257.71244598.2447317278.83828453334.2872365166632

Examples

			Some solutions with a(1,1)=0 for 6 X 6
..0..1..0..1..0..0....0..1..1..0..0..1....0..1..1..0..0..1....0..1..0..1..0..0
..1..1..0..0..1..1....1..0..0..1..1..0....1..0..0..1..1..0....0..1..1..0..1..1
..0..0..1..1..0..0....0..1..0..0..1..0....0..0..1..0..0..1....1..0..1..1..0..0
..1..1..1..0..1..1....0..1..1..0..0..1....1..1..0..1..1..0....0..1..0..0..1..1
..0..0..0..1..0..0....1..0..0..1..0..0....0..1..0..0..1..0....1..0..0..1..0..0
..1..1..0..1..0..1....0..1..1..0..1..1....1..0..1..1..0..1....1..0..1..0..1..1
		

Crossrefs

Column 1 is A000045(n-1) for n>1.
Column 2 is A000045(n+1)+1 for n>1.
Cf. A183304 (col 3), A183305 (col 4), A183306 (col 5), A183307 (col 6), A183308 (col 7), A183309 (col 8).

A084481 Number of fault-free tilings of a 4 X 2n rectangle with L tetrominoes.

Original entry on oeis.org

2, 6, 10, 18, 38, 84, 186, 410, 904, 1994, 4398, 9700, 21394, 47186, 104072, 229538, 506262, 1116596, 2462730, 5431722, 11980040, 26422810, 58277342, 128534724, 283492258, 625261858, 1379058440, 3041609138, 6708480134, 14796018708, 32633646554, 71975773242
Offset: 1

Views

Author

Ralf Stephan, May 27 2003

Keywords

Comments

Fault-free tilings are those where the only straight interface is at the left and right end. Thus a(n) <= A084480(n).
If the conjectured G.F. in A183304 is true, then a(n)= 2*A183304(n-1), n>3. - R. J. Mathar, Dec 02 2022

Crossrefs

Programs

  • PARI
    Vec(2*x*(1 + x)^2*(1 - x - x^3) / (1 - 2*x - x^3) + O(x^30)) \\ Colin Barker, Mar 28 2017

Formula

G.f.: 2*z*(1+z)^2*(1-z-z^3) / (1-2*z-z^3).
a(n) = 2*a(n-1) + a(n-3) for n>6. - Colin Barker, Mar 28 2017
Showing 1-2 of 2 results.