A084480
Number of tilings of a 4 X 2n rectangle with L tetrominoes.
Original entry on oeis.org
1, 2, 10, 42, 182, 790, 3432, 14914, 64814, 281680, 1224182, 5320310, 23122148, 100489226, 436727814, 1898026232, 8248853134, 35849651070, 155803171860, 677123141810, 2942788286798, 12789406189672, 55582969192486, 241564496305670, 1049843265359828
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Nicolas Bělohoubek and Antonín Slavík, L-Tetromino Tilings and Two-Color Integer Compositions, Univ. Karlova (Czechia, 2025). See p. 2.
- Cristopher Moore, Some Polyomino Tilings of the Plane, arXiv:9905012 [math.CO], 1999.
- Index entries for linear recurrences with constant coefficients, signature (4,2,-1,-4,-4,-2).
-
LinearRecurrence[{4, 2, -1, -4, -4, -2}, {1, 2, 10, 42, 182, 790}, 25] (* Jean-François Alcover, Feb 25 2020 *)
-
Vec((1 - 2*x - x^3) / (1 - 4*x - 2*x^2 + x^3 + 4*x^4 + 4*x^5 + 2*x^6) + O(x^30)) \\ Colin Barker, Mar 28 2017
A084478
Number of tilings of a 5 X 3n rectangle with right trominoes.
Original entry on oeis.org
1, 0, 72, 384, 8544, 76800, 1168512, 12785664, 170678784, 2014648320, 25633231872, 311423852544, 3892030055424, 47803588208640, 593425578949632, 7318730222874624, 90624271197041664, 1119402280975349760, 13847850677651745792, 171150049715628539904
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..900
- D. Merlini, R. Sprugnoli, M. C. Verri, Strip tiling and regular grammars, Theo. Comp. Sci. 242 (1-2) (2000) 109-124, Proof of Theorem 4.2 (typo t^5 in the denominator of g.f. ought be t^6)
- C. Moore, Some Polyomino Tilings of the Plane, arXiv:math/9905012 [math.CO], 1999.
- Index entries for linear recurrences with constant coefficients, signature (2,103,280,380).
-
LinearRecurrence[{2, 103, 280, 380}, {72, 384, 8544, 76800}, 20] (* Jean-François Alcover, Jan 07 2019 *)
-
Vec(24*x^2*(3 + 10*x + 15*x^2) / (1 - 2*x - 103*x^2 - 280*x^3 - 380*x^4) + O(x^30)) \\ Colin Barker, Mar 27 2017
A084477
Number of fault-free tilings of a 4 X 3n rectangle with right trominoes.
Original entry on oeis.org
4, 2, 8, 48, 288, 1728, 10368, 62208, 373248, 2239488, 13436928, 80621568, 483729408, 2902376448, 17414258688, 104485552128, 626913312768, 3761479876608, 22568879259648, 135413275557888, 812479653347328, 4874877920083968, 29249267520503808
Offset: 1
A084479
Number of fault-free tilings of a 5 X 3n rectangle with right trominoes.
Original entry on oeis.org
72, 384, 3360, 21504, 163968, 1136640, 8283648, 58791936, 423121920, 3022872576, 21679875072, 155169515520, 1111792499712, 7961492434944, 57028930483200, 408439216748544, 2925470825868288, 20952944438968320, 150073631759459328, 1074876158496638976
Offset: 2
- Colin Barker, Table of n, a(n) for n = 2..1000
- M. Aanjaneya and S. P. Pal, Faultfree tromino tilings of rectangles, arXiv:math/0610925 [math.CO], 2006.
- C. Moore, Some Polyomino Tilings of the Plane, arXiv:math/9905012 [math.CO], 1999.
- Index entries for linear recurrences with constant coefficients, signature (2,31,40,20).
-
LinearRecurrence[{2, 31, 40, 20}, {72, 384, 3360, 21504}, 20] (* Jean-François Alcover, Jan 07 2019 *)
-
Vec(24*x^2*(3 + 10*x + 15*x^2) / (1 - 2*x - 31*x^2 - 40*x^3 - 20*x^4) + O(x^30)) \\ Colin Barker, Mar 28 2017
A334396
Number of fault-free tilings of a 3 X n rectangle with squares and dominoes.
Original entry on oeis.org
0, 0, 2, 2, 10, 16, 52, 104, 286, 634, 1622, 3768, 9336, 22152, 54106, 129610, 314546, 756728, 1831196, 4413952, 10667462, 25735346, 62160046, 150020016, 362257392, 874442064, 2111291570, 5096782418, 12305249242, 29706645280, 71719568260
Offset: 1
a(4) = 2 because these are the only fault-free tilings of the 3 X 4 rectangle with squares and dominoes:
._ _ _ _ _ _ _ _
|_ _|_| | | |_|_ _|
| |_ _|_| |_|_ _| |
|_|_|_ _| |_ _|_|_|
-
[n le 4 select 2*Floor((n-1)/2) else Self(n-1) +4*Self(n-2) -Self(n-3) -Self(n-4): n in [1..40]]; // G. C. Greubel, Jan 15 2022
-
a[n_]:= (2/3)*(Fibonacci[n-1, 2] - (-1)^n*Fibonacci[n-1]);
Table[a[n], {n, 40}] (* G. C. Greubel, Jan 15 2022 *)
-
concat([0,0] , Vec(2*x^3/((1+x-x^2)*(1-2*x-x^2)) + O(x^30))) \\ Colin Barker, Aug 06 2020
-
[(2/3)*(lucas_number1(n-1,2,-1) - (-1)^n*lucas_number1(n-1,1,-1)) for n in (1..40)] # G. C. Greubel, Jan 15 2022
Showing 1-5 of 5 results.
Comments