cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A084480 Number of tilings of a 4 X 2n rectangle with L tetrominoes.

Original entry on oeis.org

1, 2, 10, 42, 182, 790, 3432, 14914, 64814, 281680, 1224182, 5320310, 23122148, 100489226, 436727814, 1898026232, 8248853134, 35849651070, 155803171860, 677123141810, 2942788286798, 12789406189672, 55582969192486, 241564496305670, 1049843265359828
Offset: 0

Views

Author

Ralf Stephan, May 27 2003

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, 2, -1, -4, -4, -2}, {1, 2, 10, 42, 182, 790}, 25] (* Jean-François Alcover, Feb 25 2020 *)
  • PARI
    Vec((1 - 2*x - x^3) / (1 - 4*x - 2*x^2 + x^3 + 4*x^4 + 4*x^5 + 2*x^6) + O(x^30)) \\ Colin Barker, Mar 28 2017

Formula

G.f.: (1-2*z-z^3) / (1-4*z-2*z^2+z^3+4*z^4+4*z^5+2*z^6).
a(n) = 4*a(n-1) + 2*a(n-2) - a(n-3) - 4*a(n-4) - 4*a(n-5) - 2*a(n-6) for n>5. - Colin Barker, Mar 28 2017

Extensions

Inserted a(0)=1 by Alois P. Heinz, May 01 2013

A084478 Number of tilings of a 5 X 3n rectangle with right trominoes.

Original entry on oeis.org

1, 0, 72, 384, 8544, 76800, 1168512, 12785664, 170678784, 2014648320, 25633231872, 311423852544, 3892030055424, 47803588208640, 593425578949632, 7318730222874624, 90624271197041664, 1119402280975349760, 13847850677651745792, 171150049715628539904
Offset: 0

Views

Author

Ralf Stephan, May 27 2003

Keywords

Comments

A right tromino is a 3-celled L-shaped piece (a 2 X 2 square with one of the four cells omitted). - N. J. A. Sloane, Mar 28 2017
There is a sign typo with respect to the g.f. in the paper.
The sequence is the Hadamard sum of the following 4 sequences: 0, 0, 0, 0, 2048, 0, 65536, 0,.. (tilings which have both vertical and horizontal faults), 0, 0, 64, 0, 0, 0, 0, 0.. (tilings which have horizontal but no vertical faults), 0, 0, 0, 0, 3136, 55296, 939008, 11649024... (tilings which have vertical faults but no horizontal faults), .. 1, 0, 8, 384, 3360, 21504, 163968 (essentially A084479) which have neither vertical nor horizontal faults. - R. J. Mathar, Dec 08 2022

Crossrefs

Cf. A046984, A084477, A084479 (INVERT transform), A084480, A084481,A351323, A351324, A236576 (straight trominoes), A233340 (mixed trominoes).

Programs

  • Mathematica
    LinearRecurrence[{2, 103, 280, 380}, {72, 384, 8544, 76800}, 20] (* Jean-François Alcover, Jan 07 2019 *)
  • PARI
    Vec(24*x^2*(3 + 10*x + 15*x^2) / (1 - 2*x - 103*x^2 - 280*x^3 - 380*x^4) + O(x^30)) \\ Colin Barker, Mar 27 2017

Formula

G.f.: (1 - 2*z - 31*z^2 - 40*z^3 - 20*z^4) / (1 - 2*z - 103*z^2 - 280*z^3 - 380*z^4).
a(n) = 2*a(n-1) + 103*a(n-2) + 280*a(n-3) + 380*a(n-4) for n > 4. - Colin Barker, Mar 27 2017

Extensions

a(0) and a(1) prepended by Alois P. Heinz, Feb 21 2022

A084477 Number of fault-free tilings of a 4 X 3n rectangle with right trominoes.

Original entry on oeis.org

4, 2, 8, 48, 288, 1728, 10368, 62208, 373248, 2239488, 13436928, 80621568, 483729408, 2902376448, 17414258688, 104485552128, 626913312768, 3761479876608, 22568879259648, 135413275557888, 812479653347328, 4874877920083968, 29249267520503808
Offset: 1

Views

Author

Ralf Stephan, May 27 2003

Keywords

Comments

A tromino is a 3-celled L-shaped piece (a 2 X 2 square with one of the four cells omitted). - N. J. A. Sloane, Mar 28 2017
Fault-free tilings are those where the only straight interface is at the left and right end. Thus a(n) <= A046984(n).

Crossrefs

Programs

  • PARI
    Vec(2*x*(2 - 11*x - 2*x^2) / (1 - 6*x) + O(x^30)) \\ Colin Barker, Mar 28 2017

Formula

a(n) = 2*A067411(n-2) for n>1.
G.f.: 2*z(2-11*z-2*z^2) / (1-6*z).
a(n) = 8 * 6^(n-3) for n>2.
G.f.: 9/2 - x - 1/Q(0) where Q(k)= 1 + 5^k/(1 - 2*x/(2*x + 5^k/Q(k+1) )); (continued fraction ). - Sergei N. Gladkovskii, Apr 10 2013
a(n) = 6*a(n-1) for n>2. - Colin Barker, Mar 28 2017

A084479 Number of fault-free tilings of a 5 X 3n rectangle with right trominoes.

Original entry on oeis.org

72, 384, 3360, 21504, 163968, 1136640, 8283648, 58791936, 423121920, 3022872576, 21679875072, 155169515520, 1111792499712, 7961492434944, 57028930483200, 408439216748544, 2925470825868288, 20952944438968320, 150073631759459328, 1074876158496638976
Offset: 2

Views

Author

Ralf Stephan, May 27 2003

Keywords

Comments

A tromino is a 3-celled L-shaped piece (a 2 X 2 square with one of the four cells omitted). - N. J. A. Sloane, Mar 28 2017
Fault-free tilings are those where the only straight interface is at the left and right end. Thus a(n) <= A084478(n).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 31, 40, 20}, {72, 384, 3360, 21504}, 20] (* Jean-François Alcover, Jan 07 2019 *)
  • PARI
    Vec(24*x^2*(3 + 10*x + 15*x^2) / (1 - 2*x - 31*x^2 - 40*x^3 - 20*x^4) + O(x^30)) \\ Colin Barker, Mar 28 2017

Formula

G.f.: 24*z^2*(3 + 10*z + 15*z^2) / (1 - 2*z - 31*z^2 - 40*z^3 - 20*z^4).
a(n) = 2*a(n-1) + 31*a(n-2) + 40*a(n-3) + 20*a(n-4) for n > 5. - Colin Barker, Mar 28 2017

A334396 Number of fault-free tilings of a 3 X n rectangle with squares and dominoes.

Original entry on oeis.org

0, 0, 2, 2, 10, 16, 52, 104, 286, 634, 1622, 3768, 9336, 22152, 54106, 129610, 314546, 756728, 1831196, 4413952, 10667462, 25735346, 62160046, 150020016, 362257392, 874442064, 2111291570, 5096782418, 12305249242, 29706645280, 71719568260
Offset: 1

Views

Author

Keywords

Comments

A fault-free tiling has no horizontal or vertical faults (that is to say, the tiling does not split along any interior horizontal or vertical line).

Examples

			a(4) = 2 because these are the only fault-free tilings of the 3 X 4 rectangle with squares and dominoes:
._ _ _ _     _ _ _ _
|_ _|_| |   | |_|_ _|
| |_ _|_|   |_|_ _| |
|_|_|_ _|   |_ _|_|_|
		

Crossrefs

Programs

  • Magma
    [n le 4 select 2*Floor((n-1)/2) else Self(n-1) +4*Self(n-2) -Self(n-3) -Self(n-4): n in [1..40]]; // G. C. Greubel, Jan 15 2022
    
  • Mathematica
    a[n_]:= (2/3)*(Fibonacci[n-1, 2] - (-1)^n*Fibonacci[n-1]);
    Table[a[n], {n, 40}] (* G. C. Greubel, Jan 15 2022 *)
  • PARI
    concat([0,0] , Vec(2*x^3/((1+x-x^2)*(1-2*x-x^2)) + O(x^30))) \\ Colin Barker, Aug 06 2020
    
  • Sage
    [(2/3)*(lucas_number1(n-1,2,-1) - (-1)^n*lucas_number1(n-1,1,-1)) for n in (1..40)] # G. C. Greubel, Jan 15 2022

Formula

a(n) = a(n-1) + 4*a(n-2) - a(n-3) - a(n-4) for n >= 5.
a(n) = 2*A112577(n-2) for n >= 2.
G.f.: 2*x^3 / ((1 + x - x^2)*(1 - 2*x - x^2)). - Colin Barker, Aug 06 2020
Showing 1-5 of 5 results.