cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A226322 Number of tilings of a 4 X n rectangle using L tetrominoes and 2 X 2 tiles.

Original entry on oeis.org

1, 0, 3, 6, 19, 48, 141, 378, 1063, 2920, 8115, 22418, 62123, 171876, 475919, 1317250, 3646681, 10094356, 27943739, 77353070, 214129845, 592752572, 1640859689, 4542223926, 12573787053, 34806745800, 96352029241, 266721635838, 738338745535, 2043868995512
Offset: 0

Views

Author

Alois P. Heinz, Jun 03 2013

Keywords

Examples

			a(3) = 6:
._____.  ._____.  .___._.  ._.___.  ._____.  ._____.
| .___|  |___. |  |   | |  | |   |  |___. |  | .___|
|_|_. |  | ._|_|  |___| |  | |___|  |   |_|  |_|   |
|   | |  | |   |  | |___|  |___| |  |___| |  | |___|
|___|_|  |_|___|  |_____|  |_____|  |_____|  |_____|
		

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix(12, (i, j)-> `if`(i+1=j, 1, `if`(i=12,
        [-2, 0, -4, -2, -3, 0, -1, 0, 4, 6, 5, 0][j], 0)))^(n+8).
        <<-1, 0, 1/2, [0$5][], 1, 0, 3, 6>>)[1, 1]:
    seq(a(n), n=0..40);
  • Mathematica
    a[n_] := MatrixPower[ Table[ If[i+1 == j, 1, If[i == 12, {-2, 0, -4, -2, -3, 0, -1, 0, 4, 6, 5, 0}[[j]], 0]], {i, 1, 12}, {j, 1, 12}], n+8].{-1, 0, 1/2, 0, 0, 0, 0, 0, 1, 0, 3, 6} // First; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Dec 05 2013, after Maple *)

Formula

G.f.: (x^6+2*x^2-1) / (-2*x^12 -4*x^10 -2*x^9 -3*x^8 -x^6 +4*x^4 +6*x^3 +5*x^2-1).

A084478 Number of tilings of a 5 X 3n rectangle with right trominoes.

Original entry on oeis.org

1, 0, 72, 384, 8544, 76800, 1168512, 12785664, 170678784, 2014648320, 25633231872, 311423852544, 3892030055424, 47803588208640, 593425578949632, 7318730222874624, 90624271197041664, 1119402280975349760, 13847850677651745792, 171150049715628539904
Offset: 0

Views

Author

Ralf Stephan, May 27 2003

Keywords

Comments

A right tromino is a 3-celled L-shaped piece (a 2 X 2 square with one of the four cells omitted). - N. J. A. Sloane, Mar 28 2017
There is a sign typo with respect to the g.f. in the paper.
The sequence is the Hadamard sum of the following 4 sequences: 0, 0, 0, 0, 2048, 0, 65536, 0,.. (tilings which have both vertical and horizontal faults), 0, 0, 64, 0, 0, 0, 0, 0.. (tilings which have horizontal but no vertical faults), 0, 0, 0, 0, 3136, 55296, 939008, 11649024... (tilings which have vertical faults but no horizontal faults), .. 1, 0, 8, 384, 3360, 21504, 163968 (essentially A084479) which have neither vertical nor horizontal faults. - R. J. Mathar, Dec 08 2022

Crossrefs

Cf. A046984, A084477, A084479 (INVERT transform), A084480, A084481,A351323, A351324, A236576 (straight trominoes), A233340 (mixed trominoes).

Programs

  • Mathematica
    LinearRecurrence[{2, 103, 280, 380}, {72, 384, 8544, 76800}, 20] (* Jean-François Alcover, Jan 07 2019 *)
  • PARI
    Vec(24*x^2*(3 + 10*x + 15*x^2) / (1 - 2*x - 103*x^2 - 280*x^3 - 380*x^4) + O(x^30)) \\ Colin Barker, Mar 27 2017

Formula

G.f.: (1 - 2*z - 31*z^2 - 40*z^3 - 20*z^4) / (1 - 2*z - 103*z^2 - 280*z^3 - 380*z^4).
a(n) = 2*a(n-1) + 103*a(n-2) + 280*a(n-3) + 380*a(n-4) for n > 4. - Colin Barker, Mar 27 2017

Extensions

a(0) and a(1) prepended by Alois P. Heinz, Feb 21 2022

A084477 Number of fault-free tilings of a 4 X 3n rectangle with right trominoes.

Original entry on oeis.org

4, 2, 8, 48, 288, 1728, 10368, 62208, 373248, 2239488, 13436928, 80621568, 483729408, 2902376448, 17414258688, 104485552128, 626913312768, 3761479876608, 22568879259648, 135413275557888, 812479653347328, 4874877920083968, 29249267520503808
Offset: 1

Views

Author

Ralf Stephan, May 27 2003

Keywords

Comments

A tromino is a 3-celled L-shaped piece (a 2 X 2 square with one of the four cells omitted). - N. J. A. Sloane, Mar 28 2017
Fault-free tilings are those where the only straight interface is at the left and right end. Thus a(n) <= A046984(n).

Crossrefs

Programs

  • PARI
    Vec(2*x*(2 - 11*x - 2*x^2) / (1 - 6*x) + O(x^30)) \\ Colin Barker, Mar 28 2017

Formula

a(n) = 2*A067411(n-2) for n>1.
G.f.: 2*z(2-11*z-2*z^2) / (1-6*z).
a(n) = 8 * 6^(n-3) for n>2.
G.f.: 9/2 - x - 1/Q(0) where Q(k)= 1 + 5^k/(1 - 2*x/(2*x + 5^k/Q(k+1) )); (continued fraction ). - Sergei N. Gladkovskii, Apr 10 2013
a(n) = 6*a(n-1) for n>2. - Colin Barker, Mar 28 2017

A232497 Number of tilings of a 4 X n rectangle using L and Z tetrominoes.

Original entry on oeis.org

1, 0, 2, 6, 14, 32, 102, 238, 652, 1696, 4480, 11658, 30870, 80644, 212292, 556858, 1463390, 3840686, 10090218, 26490280, 69575414, 182693434, 479789138, 1259906496, 3308668718, 8688615148, 22817011182, 59918425698, 157349755400, 413208421354, 1085110433096
Offset: 0

Views

Author

Alois P. Heinz, Nov 24 2013

Keywords

Examples

			a(3) = 6:
._._._.  ._._._.  ._._._.  ._._._.  ._._._.  ._._._.
| .___|  |___. |  | |_. |  | ._| |  | .___|  |___. |
|_| ._|  |_. |_|  |_. | |  | | ._|  |_| | |  | | |_|
|___| |  | |___|  | |_|_|  |_|_| |  | ._| |  | |_. |
|_____|  |_____|  |_____|  |_____|  |_|___|  |___|_|.
		

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(-(x^6-x^5-2*x^4+x^3+3*x^2-1)/
        (2*x^12+4*x^10+6*x^8+6*x^7+13*x^6+13*x^5-2*x^4-7*x^3-5*x^2+1),
        x, n+1), x, n);
    seq(a(n), n=0..40);

Formula

G.f.: -(x^6-x^5-2*x^4+x^3+3*x^2-1) / (2*x^12 +4*x^10 +6*x^8 +6*x^7 +13*x^6 +13*x^5 -2*x^4 -7*x^3 -5*x^2+1).

A233191 Number of tilings of a 4 X n rectangle using L and T tetrominoes.

Original entry on oeis.org

1, 0, 2, 4, 12, 16, 76, 128, 386, 832, 2368, 5024, 13946, 31680, 82632, 193696, 498174, 1182464, 2993384, 7213648, 18061074, 43832960, 109163384, 266217472, 660116398, 1615451648, 3995295112, 9796774896, 24189684402, 59396496000, 146494223160, 360026507808
Offset: 0

Views

Author

Alois P. Heinz, Dec 05 2013

Keywords

Examples

			a(3) = 4:
._____.  ._____.  ._____.  ._____.
|_. ._|  |_. ._|  | |_. |  | ._| |
| |_| |  | |_| |  | ._| |  | |_. |
| ._| |  | |_. |  |_| |_|  |_| |_|
|_|___|  |___|_|  |_____|  |_____|.
		

Crossrefs

Programs

  • Maple
    gf:= (2*x^6+x^4+2*x^2-1) / (-8*x^12 -8*x^9 -18*x^8
         +12*x^7 +4*x^6 -8*x^5 +5*x^4 +4*x^3 +4*x^2 -1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..40);

Formula

G.f.: (2*x^6+x^4+2*x^2-1) / (-8*x^12 -8*x^9 -18*x^8 +12*x^7 +4*x^6 -8*x^5 +5*x^4 +4*x^3 +4*x^2 -1).

A233266 Number of tilings of a 4 X n rectangle using tetrominoes of shapes L, T, Z.

Original entry on oeis.org

1, 0, 2, 10, 24, 70, 276, 820, 2616, 8702, 27902, 89500, 291050, 939222, 3029950, 9798606, 31657182, 102237766, 330356240, 1067310022, 3447911968, 11139391996, 35988377472, 116265759012, 375619824338, 1213515477460, 3920484872552, 12665878390278
Offset: 0

Views

Author

Alois P. Heinz, Dec 06 2013

Keywords

Examples

			a(3) = 10:
._____.  ._____.  ._____.  ._____.  ._____.
| |_. |  | ._| |  | .___|  |___. |  | .___|
|_. | |  | | ._|  |_| | |  | | |_|  |_| ._|
| |_|_|  |_|_| |  | ._| |  | |_. |  |___| |
|_____|  |_____|  |_|___|  |___|_|  |_____|
._____.  ._____.  ._____.  ._____.  ._____.
| ._| |  | |_. |  |_. ._|  |_. ._|  |___. |
| |_. |  | ._| |  | |_| |  | |_| |  |_. |_|
|_| |_|  |_| |_|  | |_. |  | ._| |  | |___|
|_____|  |_____|  |___|_|  |_|___|  |_____|.
		

Crossrefs

Formula

G.f.: (x^8 -4*x^7 +3*x^6 -2*x^5 -2*x^4 -2*x^3 +2*x^2 +2*x -1) / (-2*x^14 +8*x^13 -10*x^12 +16*x^11 -4*x^10 +20*x^9 -13*x^8 +4*x^7 +15*x^6 -28*x^5 -6*x^4 +4*x^3 +4*x^2 +2*x -1).

A084479 Number of fault-free tilings of a 5 X 3n rectangle with right trominoes.

Original entry on oeis.org

72, 384, 3360, 21504, 163968, 1136640, 8283648, 58791936, 423121920, 3022872576, 21679875072, 155169515520, 1111792499712, 7961492434944, 57028930483200, 408439216748544, 2925470825868288, 20952944438968320, 150073631759459328, 1074876158496638976
Offset: 2

Views

Author

Ralf Stephan, May 27 2003

Keywords

Comments

A tromino is a 3-celled L-shaped piece (a 2 X 2 square with one of the four cells omitted). - N. J. A. Sloane, Mar 28 2017
Fault-free tilings are those where the only straight interface is at the left and right end. Thus a(n) <= A084478(n).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 31, 40, 20}, {72, 384, 3360, 21504}, 20] (* Jean-François Alcover, Jan 07 2019 *)
  • PARI
    Vec(24*x^2*(3 + 10*x + 15*x^2) / (1 - 2*x - 31*x^2 - 40*x^3 - 20*x^4) + O(x^30)) \\ Colin Barker, Mar 28 2017

Formula

G.f.: 24*z^2*(3 + 10*z + 15*z^2) / (1 - 2*z - 31*z^2 - 40*z^3 - 20*z^4).
a(n) = 2*a(n-1) + 31*a(n-2) + 40*a(n-3) + 20*a(n-4) for n > 5. - Colin Barker, Mar 28 2017

A084481 Number of fault-free tilings of a 4 X 2n rectangle with L tetrominoes.

Original entry on oeis.org

2, 6, 10, 18, 38, 84, 186, 410, 904, 1994, 4398, 9700, 21394, 47186, 104072, 229538, 506262, 1116596, 2462730, 5431722, 11980040, 26422810, 58277342, 128534724, 283492258, 625261858, 1379058440, 3041609138, 6708480134, 14796018708, 32633646554, 71975773242
Offset: 1

Views

Author

Ralf Stephan, May 27 2003

Keywords

Comments

Fault-free tilings are those where the only straight interface is at the left and right end. Thus a(n) <= A084480(n).
If the conjectured G.F. in A183304 is true, then a(n)= 2*A183304(n-1), n>3. - R. J. Mathar, Dec 02 2022

Crossrefs

Programs

  • PARI
    Vec(2*x*(1 + x)^2*(1 - x - x^3) / (1 - 2*x - x^3) + O(x^30)) \\ Colin Barker, Mar 28 2017

Formula

G.f.: 2*z*(1+z)^2*(1-z-z^3) / (1-2*z-z^3).
a(n) = 2*a(n-1) + a(n-3) for n>6. - Colin Barker, Mar 28 2017

A233139 Number of tilings of a 4 X n rectangle using T and Z tetrominoes.

Original entry on oeis.org

1, 0, 0, 0, 2, 4, 8, 18, 44, 104, 242, 564, 1320, 3090, 7228, 16904, 39538, 92484, 216328, 506002, 1183564, 2768424, 6475506, 15146580, 35428712, 82869778, 193837148, 453396168, 1060519538, 2480615780, 5802302024, 13571915922, 31745486700, 74254506984
Offset: 0

Views

Author

Alois P. Heinz, Dec 04 2013

Keywords

Examples

			a(5) = 4:
._____.___.  .___._____.  ._._____._.  ._._____._.
|_. ._| ._|  |_. |_. ._|  | |_. ._| |  | |_. ._| |
| |_|___| |  | |___|_| |  | ._|_|_. |  | ._|_|_. |
| ._| |_. |  | ._| |_. |  |_| |_. |_|  |_| ._| |_|
|_|_____|_|  |_|_____|_|  |_____|___|  |___|_____|.
		

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <2|1|0|2>>^n.
            <<1, 0, 0, 0>>)[1, 1]:
    seq(a(n), n=0..40);

Formula

G.f.: (x^3+2*x-1) / (2*x^4+x^3+2*x-1).
a(n) = 2*a(n-1)+a(n-3)+2*a(n-4) for n>3, a(0)=1, a(1)=a(2)=a(3)=0.

A242636 Number of tilings of a 4 X n rectangle using tetrominoes of shapes L, Z, O.

Original entry on oeis.org

1, 0, 3, 12, 23, 94, 289, 842, 2771, 8510, 26411, 83122, 258199, 805914, 2517287, 7846960, 24490017, 76416244, 238387767, 743840496, 2320800841, 7240890040, 22592311143, 70488834118, 219928631821, 686190651342, 2140948175385, 6679872756528, 20841562274863
Offset: 0

Views

Author

Alois P. Heinz, May 19 2014

Keywords

Examples

			a(3) = 12:
._____.  ._____.  .___._.  ._.___.  ._____.  ._____.
| .___|  |___. |  |   | |  | |   |  |___. |  | .___|
|_|_. |  | ._|_|  |___| |  | |___|  |   |_|  |_|   |
|   | |  | |   |  | |___|  |___| |  |___| |  | |___|
|___|_|  |_|___|  |_____|  |_____|  |_____|  |_____|
._____.  ._____.  ._.___.  .___._.  ._____.  ._____.
| .___|  |___. |  | |_. |  | ._| |  | .___|  |___. |
|_| ._|  |_. |_|  |_. | |  | | ._|  |_| | |  | | |_|
|___| |  | |___|  | |_|_|  |_|_| |  | ._| |  | |_. |
|_____|  |_____|  |_____|  |_____|  |_|___|  |___|_|.
		

Crossrefs

Programs

  • Maple
    gf:= (x^6-x^5-2*x^4+x^3+3*x^2-1) / (-2*x^12 -4*x^10 -2*x^9 +x^8 -3*x^7 -13*x^6 -18*x^5 +3*x^4 +13*x^3 +6*x^2 -1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..40);

Formula

G.f.: (x^6-x^5-2*x^4+x^3+3*x^2-1) / (-2*x^12 -4*x^10 -2*x^9 +x^8 -3*x^7 -13*x^6 -18*x^5 +3*x^4 +13*x^3 +6*x^2 -1).
Showing 1-10 of 10 results.