A232497
Number of tilings of a 4 X n rectangle using L and Z tetrominoes.
Original entry on oeis.org
1, 0, 2, 6, 14, 32, 102, 238, 652, 1696, 4480, 11658, 30870, 80644, 212292, 556858, 1463390, 3840686, 10090218, 26490280, 69575414, 182693434, 479789138, 1259906496, 3308668718, 8688615148, 22817011182, 59918425698, 157349755400, 413208421354, 1085110433096
Offset: 0
a(3) = 6:
._._._. ._._._. ._._._. ._._._. ._._._. ._._._.
| .___| |___. | | |_. | | ._| | | .___| |___. |
|_| ._| |_. |_| |_. | | | | ._| |_| | | | | |_|
|___| | | |___| | |_|_| |_|_| | | ._| | | |_. |
|_____| |_____| |_____| |_____| |_|___| |___|_|.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Nicolas Bělohoubek and Antonín Slavík, L-Tetromino Tilings and Two-Color Integer Compositions, Univ. Karlova (Czechia, 2025). See p. 10.
- Wikipedia, Tetromino
- Index entries for linear recurrences with constant coefficients, signature (0,5,7,2,-13,-13,-6,-6,0,-4,0,-2).
-
a:= n-> coeff(series(-(x^6-x^5-2*x^4+x^3+3*x^2-1)/
(2*x^12+4*x^10+6*x^8+6*x^7+13*x^6+13*x^5-2*x^4-7*x^3-5*x^2+1),
x, n+1), x, n);
seq(a(n), n=0..40);
A233191
Number of tilings of a 4 X n rectangle using L and T tetrominoes.
Original entry on oeis.org
1, 0, 2, 4, 12, 16, 76, 128, 386, 832, 2368, 5024, 13946, 31680, 82632, 193696, 498174, 1182464, 2993384, 7213648, 18061074, 43832960, 109163384, 266217472, 660116398, 1615451648, 3995295112, 9796774896, 24189684402, 59396496000, 146494223160, 360026507808
Offset: 0
a(3) = 4:
._____. ._____. ._____. ._____.
|_. ._| |_. ._| | |_. | | ._| |
| |_| | | |_| | | ._| | | |_. |
| ._| | | |_. | |_| |_| |_| |_|
|_|___| |___|_| |_____| |_____|.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Nicolas Bělohoubek and Antonín Slavík, L-Tetromino Tilings and Two-Color Integer Compositions, Univ. Karlova (Czechia, 2025). See p. 10.
- Wikipedia, Tetromino
- Index entries for linear recurrences with constant coefficients, signature (0, 4, 4, 5, -8, 4, 12, -18, -8, 0, 0, -8).
-
gf:= (2*x^6+x^4+2*x^2-1) / (-8*x^12 -8*x^9 -18*x^8
+12*x^7 +4*x^6 -8*x^5 +5*x^4 +4*x^3 +4*x^2 -1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
A233266
Number of tilings of a 4 X n rectangle using tetrominoes of shapes L, T, Z.
Original entry on oeis.org
1, 0, 2, 10, 24, 70, 276, 820, 2616, 8702, 27902, 89500, 291050, 939222, 3029950, 9798606, 31657182, 102237766, 330356240, 1067310022, 3447911968, 11139391996, 35988377472, 116265759012, 375619824338, 1213515477460, 3920484872552, 12665878390278
Offset: 0
a(3) = 10:
._____. ._____. ._____. ._____. ._____.
| |_. | | ._| | | .___| |___. | | .___|
|_. | | | | ._| |_| | | | | |_| |_| ._|
| |_|_| |_|_| | | ._| | | |_. | |___| |
|_____| |_____| |_|___| |___|_| |_____|
._____. ._____. ._____. ._____. ._____.
| ._| | | |_. | |_. ._| |_. ._| |___. |
| |_. | | ._| | | |_| | | |_| | |_. |_|
|_| |_| |_| |_| | |_. | | ._| | | |___|
|_____| |_____| |___|_| |_|___| |_____|.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Nicolas Bělohoubek and Antonín Slavík, L-Tetromino Tilings and Two-Color Integer Compositions, Univ. Karlova (Czechia, 2025). See p. 10.
- Wikipedia, Tetromino
- Index entries for linear recurrences with constant coefficients, signature (2, 4, 4, -6, -28, 15, 4, -13, 20, -4, 16, -10, 8, -2).
A242636
Number of tilings of a 4 X n rectangle using tetrominoes of shapes L, Z, O.
Original entry on oeis.org
1, 0, 3, 12, 23, 94, 289, 842, 2771, 8510, 26411, 83122, 258199, 805914, 2517287, 7846960, 24490017, 76416244, 238387767, 743840496, 2320800841, 7240890040, 22592311143, 70488834118, 219928631821, 686190651342, 2140948175385, 6679872756528, 20841562274863
Offset: 0
a(3) = 12:
._____. ._____. .___._. ._.___. ._____. ._____.
| .___| |___. | | | | | | | |___. | | .___|
|_|_. | | ._|_| |___| | | |___| | |_| |_| |
| | | | | | | |___| |___| | |___| | | |___|
|___|_| |_|___| |_____| |_____| |_____| |_____|
._____. ._____. ._.___. .___._. ._____. ._____.
| .___| |___. | | |_. | | ._| | | .___| |___. |
|_| ._| |_. |_| |_. | | | | ._| |_| | | | | |_|
|___| | | |___| | |_|_| |_|_| | | ._| | | |_. |
|_____| |_____| |_____| |_____| |_|___| |___|_|.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Nicolas Bělohoubek and Antonín Slavík, L-Tetromino Tilings and Two-Color Integer Compositions, Univ. Karlova (Czechia, 2025). See p. 10.
- Wikipedia, Tetromino
- Index entries for linear recurrences with constant coefficients, signature (0,6,13,3,-18,-13,-3,1,-2,-4,0,-2).
-
gf:= (x^6-x^5-2*x^4+x^3+3*x^2-1) / (-2*x^12 -4*x^10 -2*x^9 +x^8 -3*x^7 -13*x^6 -18*x^5 +3*x^4 +13*x^3 +6*x^2 -1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
Showing 1-4 of 4 results.