cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A084480 Number of tilings of a 4 X 2n rectangle with L tetrominoes.

Original entry on oeis.org

1, 2, 10, 42, 182, 790, 3432, 14914, 64814, 281680, 1224182, 5320310, 23122148, 100489226, 436727814, 1898026232, 8248853134, 35849651070, 155803171860, 677123141810, 2942788286798, 12789406189672, 55582969192486, 241564496305670, 1049843265359828
Offset: 0

Views

Author

Ralf Stephan, May 27 2003

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, 2, -1, -4, -4, -2}, {1, 2, 10, 42, 182, 790}, 25] (* Jean-François Alcover, Feb 25 2020 *)
  • PARI
    Vec((1 - 2*x - x^3) / (1 - 4*x - 2*x^2 + x^3 + 4*x^4 + 4*x^5 + 2*x^6) + O(x^30)) \\ Colin Barker, Mar 28 2017

Formula

G.f.: (1-2*z-z^3) / (1-4*z-2*z^2+z^3+4*z^4+4*z^5+2*z^6).
a(n) = 4*a(n-1) + 2*a(n-2) - a(n-3) - 4*a(n-4) - 4*a(n-5) - 2*a(n-6) for n>5. - Colin Barker, Mar 28 2017

Extensions

Inserted a(0)=1 by Alois P. Heinz, May 01 2013

A084478 Number of tilings of a 5 X 3n rectangle with right trominoes.

Original entry on oeis.org

1, 0, 72, 384, 8544, 76800, 1168512, 12785664, 170678784, 2014648320, 25633231872, 311423852544, 3892030055424, 47803588208640, 593425578949632, 7318730222874624, 90624271197041664, 1119402280975349760, 13847850677651745792, 171150049715628539904
Offset: 0

Views

Author

Ralf Stephan, May 27 2003

Keywords

Comments

A right tromino is a 3-celled L-shaped piece (a 2 X 2 square with one of the four cells omitted). - N. J. A. Sloane, Mar 28 2017
There is a sign typo with respect to the g.f. in the paper.
The sequence is the Hadamard sum of the following 4 sequences: 0, 0, 0, 0, 2048, 0, 65536, 0,.. (tilings which have both vertical and horizontal faults), 0, 0, 64, 0, 0, 0, 0, 0.. (tilings which have horizontal but no vertical faults), 0, 0, 0, 0, 3136, 55296, 939008, 11649024... (tilings which have vertical faults but no horizontal faults), .. 1, 0, 8, 384, 3360, 21504, 163968 (essentially A084479) which have neither vertical nor horizontal faults. - R. J. Mathar, Dec 08 2022

Crossrefs

Cf. A046984, A084477, A084479 (INVERT transform), A084480, A084481,A351323, A351324, A236576 (straight trominoes), A233340 (mixed trominoes).

Programs

  • Mathematica
    LinearRecurrence[{2, 103, 280, 380}, {72, 384, 8544, 76800}, 20] (* Jean-François Alcover, Jan 07 2019 *)
  • PARI
    Vec(24*x^2*(3 + 10*x + 15*x^2) / (1 - 2*x - 103*x^2 - 280*x^3 - 380*x^4) + O(x^30)) \\ Colin Barker, Mar 27 2017

Formula

G.f.: (1 - 2*z - 31*z^2 - 40*z^3 - 20*z^4) / (1 - 2*z - 103*z^2 - 280*z^3 - 380*z^4).
a(n) = 2*a(n-1) + 103*a(n-2) + 280*a(n-3) + 380*a(n-4) for n > 4. - Colin Barker, Mar 27 2017

Extensions

a(0) and a(1) prepended by Alois P. Heinz, Feb 21 2022

A046984 Number of ways to tile a 4 X 3n rectangle with right trominoes.

Original entry on oeis.org

1, 4, 18, 88, 468, 2672, 16072, 100064, 636368, 4097984, 26579488, 173093760, 1129796928, 7383588608, 48287978624, 315921649152, 2067346607360, 13530037877760, 88555066819072, 579620448450560, 3793872862974976, 24832858496561152, 162544900186359808
Offset: 0

Views

Author

Cristopher Moore (moore(AT)santafe.edu)

Keywords

Comments

The sequence of tiling 2 X 3n rectangles with L-trominoes is 2^n. The sequence of tiling 3 X 2n rectangles is 2^n. All these tilings have vertical faults but no horizontal faults. - R. J. Mathar, Dec 08 2022
This sequence is the Hadamard sum of the following 4 sequences: 0, 0, 16, 64, 256, 1024, 4096... (A000302, tilings which have both vertical and horizontal faults), 0, 4, 0, 0, 0, 0, 0, ...(tilings which have horizontal but no vertical faults), 0, 0, 0, 16, 164, 1360, 10248, 73312, 508624, 3462592, 23291424.. (tilings which have vertical but no horizontal faults), 1, 0, 2, 8, 48, 288, 1728, 10368,.. (essentially A084477, tilings which have neither vertical nor horizontal faults). - R. J. Mathar, Dec 08 2022

References

  • Suggested on p. 96 of 1994 edition of "Polyominoes" by Samuel W. Golomb.

Crossrefs

Cf. A084478 (5 X 3n), A351323 (6 X n), A351324 (7 X 3n), A049086 (straight trominoes), A233339 (mixed trominoes).

Programs

  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <-4|-22|10>>^n. <<1, 4, 18>>)[1, 1]:
    seq(a(n), n=0..22);  # Alois P. Heinz, Feb 21 2022
  • Mathematica
    CoefficientList[Series[(1-6x)/(1-10x+22x^2+4x^3),{x,0,40}],x] (* or *) LinearRecurrence[{10,-22,-4},{1,4,18},40] (* Harvey P. Dale, Mar 31 2012 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -4,-22,10]^n*[1;4;18])[1,1] \\ Charles R Greathouse IV, Feb 10 2017

Formula

G.f.: (1 - 6*x)/(1 - 10*x + 22*x^2 + 4*x^3).
a(0)=1, a(1)=4, a(2)=18, a(n)=10*a(n-1)-22*a(n-2)-4*a(n-3). - Harvey P. Dale, Mar 31 2012

A084479 Number of fault-free tilings of a 5 X 3n rectangle with right trominoes.

Original entry on oeis.org

72, 384, 3360, 21504, 163968, 1136640, 8283648, 58791936, 423121920, 3022872576, 21679875072, 155169515520, 1111792499712, 7961492434944, 57028930483200, 408439216748544, 2925470825868288, 20952944438968320, 150073631759459328, 1074876158496638976
Offset: 2

Views

Author

Ralf Stephan, May 27 2003

Keywords

Comments

A tromino is a 3-celled L-shaped piece (a 2 X 2 square with one of the four cells omitted). - N. J. A. Sloane, Mar 28 2017
Fault-free tilings are those where the only straight interface is at the left and right end. Thus a(n) <= A084478(n).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 31, 40, 20}, {72, 384, 3360, 21504}, 20] (* Jean-François Alcover, Jan 07 2019 *)
  • PARI
    Vec(24*x^2*(3 + 10*x + 15*x^2) / (1 - 2*x - 31*x^2 - 40*x^3 - 20*x^4) + O(x^30)) \\ Colin Barker, Mar 28 2017

Formula

G.f.: 24*z^2*(3 + 10*z + 15*z^2) / (1 - 2*z - 31*z^2 - 40*z^3 - 20*z^4).
a(n) = 2*a(n-1) + 31*a(n-2) + 40*a(n-3) + 20*a(n-4) for n > 5. - Colin Barker, Mar 28 2017

A084481 Number of fault-free tilings of a 4 X 2n rectangle with L tetrominoes.

Original entry on oeis.org

2, 6, 10, 18, 38, 84, 186, 410, 904, 1994, 4398, 9700, 21394, 47186, 104072, 229538, 506262, 1116596, 2462730, 5431722, 11980040, 26422810, 58277342, 128534724, 283492258, 625261858, 1379058440, 3041609138, 6708480134, 14796018708, 32633646554, 71975773242
Offset: 1

Views

Author

Ralf Stephan, May 27 2003

Keywords

Comments

Fault-free tilings are those where the only straight interface is at the left and right end. Thus a(n) <= A084480(n).
If the conjectured G.F. in A183304 is true, then a(n)= 2*A183304(n-1), n>3. - R. J. Mathar, Dec 02 2022

Crossrefs

Programs

  • PARI
    Vec(2*x*(1 + x)^2*(1 - x - x^3) / (1 - 2*x - x^3) + O(x^30)) \\ Colin Barker, Mar 28 2017

Formula

G.f.: 2*z*(1+z)^2*(1-z-z^3) / (1-2*z-z^3).
a(n) = 2*a(n-1) + a(n-3) for n>6. - Colin Barker, Mar 28 2017

A334396 Number of fault-free tilings of a 3 X n rectangle with squares and dominoes.

Original entry on oeis.org

0, 0, 2, 2, 10, 16, 52, 104, 286, 634, 1622, 3768, 9336, 22152, 54106, 129610, 314546, 756728, 1831196, 4413952, 10667462, 25735346, 62160046, 150020016, 362257392, 874442064, 2111291570, 5096782418, 12305249242, 29706645280, 71719568260
Offset: 1

Views

Author

Keywords

Comments

A fault-free tiling has no horizontal or vertical faults (that is to say, the tiling does not split along any interior horizontal or vertical line).

Examples

			a(4) = 2 because these are the only fault-free tilings of the 3 X 4 rectangle with squares and dominoes:
._ _ _ _     _ _ _ _
|_ _|_| |   | |_|_ _|
| |_ _|_|   |_|_ _| |
|_|_|_ _|   |_ _|_|_|
		

Crossrefs

Programs

  • Magma
    [n le 4 select 2*Floor((n-1)/2) else Self(n-1) +4*Self(n-2) -Self(n-3) -Self(n-4): n in [1..40]]; // G. C. Greubel, Jan 15 2022
    
  • Mathematica
    a[n_]:= (2/3)*(Fibonacci[n-1, 2] - (-1)^n*Fibonacci[n-1]);
    Table[a[n], {n, 40}] (* G. C. Greubel, Jan 15 2022 *)
  • PARI
    concat([0,0] , Vec(2*x^3/((1+x-x^2)*(1-2*x-x^2)) + O(x^30))) \\ Colin Barker, Aug 06 2020
    
  • Sage
    [(2/3)*(lucas_number1(n-1,2,-1) - (-1)^n*lucas_number1(n-1,1,-1)) for n in (1..40)] # G. C. Greubel, Jan 15 2022

Formula

a(n) = a(n-1) + 4*a(n-2) - a(n-3) - a(n-4) for n >= 5.
a(n) = 2*A112577(n-2) for n >= 2.
G.f.: 2*x^3 / ((1 + x - x^2)*(1 - 2*x - x^2)). - Colin Barker, Aug 06 2020

A270576 Expansion of g.f. (1+2*x)/(1-6*x).

Original entry on oeis.org

1, 8, 48, 288, 1728, 10368, 62208, 373248, 2239488, 13436928, 80621568, 483729408, 2902376448, 17414258688, 104485552128, 626913312768, 3761479876608, 22568879259648, 135413275557888, 812479653347328, 4874877920083968, 29249267520503808, 175495605123022848, 1052973630738137088
Offset: 0

Views

Author

Colin Barker, Mar 19 2016

Keywords

Comments

Partial sums are 1, 9, 57, 345, 2073, 12441, ...
Essentially the same as A084477. - R. J. Mathar, Mar 21 2016

Crossrefs

Cf. A000400 (powers of 6), A003949: (1+x)/(1-6*x), A084477.

Programs

  • PARI
    Vec((1+2*x)/(1-6*x) + O(x^30))

Formula

G.f.: (1+2*x)/(1-6*x).
a(n) = 6*a(n-1) for n>1.
a(n) = 8*6^(n-1) for n>0.
E.g.f.: (4*exp(6*x) - 1)/3. - Elmo R. Oliveira, Mar 25 2025
Showing 1-7 of 7 results.