A174248
Number of tilings of a 4 X n rectangle with n tetrominoes of any shape.
Original entry on oeis.org
1, 1, 4, 23, 117, 454, 2003, 9157, 40899, 179399, 796558, 3546996, 15747348, 69834517, 310058192, 1376868145, 6112247118, 27132236455, 120453362938, 534754586459, 2373975139658, 10538953415410, 46786795734201, 207705902269424, 922089495910044, 4093525019450760
Offset: 0
Bob Harris (me13013(AT)gmail.com), Mar 13 2010
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Nicolas Bělohoubek and Antonín Slavík, L-Tetromino Tilings and Two-Color Integer Compositions, Univ. Karlova (Czechia, 2025). See p. 10.
- S. Butler, J. Ekstrand, and S. Osborne, TETRIS Tiling, AMS Spring Central Sectional, Iowa State University, April 27-28 2013.
- R. S. Harris, Counting Nonomino Tilings and Other Things of that Ilk, G4G9 Gift Exchange book, 2010.
- R. S. Harris, Counting Polyomino Tilings.
- Wikipedia, Tetris.
- Wikipedia, Tetromino.
- Index entries for linear recurrences with constant coefficients, signature (2, 8, 8, 54, -77, -290, -76, -548, 469, 2258, 414, 1970, -1053, -6885, -1620, -3349, 1102, 9566, 3210, 2786, -489, -6047, -2600, -1102, 60, 1476, 659, 225, 39, -123, -50, -13, -3, 3, 1).
A084480
Number of tilings of a 4 X 2n rectangle with L tetrominoes.
Original entry on oeis.org
1, 2, 10, 42, 182, 790, 3432, 14914, 64814, 281680, 1224182, 5320310, 23122148, 100489226, 436727814, 1898026232, 8248853134, 35849651070, 155803171860, 677123141810, 2942788286798, 12789406189672, 55582969192486, 241564496305670, 1049843265359828
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Nicolas Bělohoubek and Antonín Slavík, L-Tetromino Tilings and Two-Color Integer Compositions, Univ. Karlova (Czechia, 2025). See p. 2.
- Cristopher Moore, Some Polyomino Tilings of the Plane, arXiv:9905012 [math.CO], 1999.
- Index entries for linear recurrences with constant coefficients, signature (4,2,-1,-4,-4,-2).
-
LinearRecurrence[{4, 2, -1, -4, -4, -2}, {1, 2, 10, 42, 182, 790}, 25] (* Jean-François Alcover, Feb 25 2020 *)
-
Vec((1 - 2*x - x^3) / (1 - 4*x - 2*x^2 + x^3 + 4*x^4 + 4*x^5 + 2*x^6) + O(x^30)) \\ Colin Barker, Mar 28 2017
A165791
Number of tilings of a 4 X n rectangle using dominoes and right trominoes.
Original entry on oeis.org
1, 1, 11, 55, 380, 2319, 15171, 96139, 619773, 3962734, 25445515, 163048957, 1045897075, 6705473761, 43001795070, 275730928993, 1768128097215, 11337760387473, 72702310606249, 466192677008538, 2989403530821497, 19169143325987983, 122919655766448729
Offset: 0
a(2) = 11, because there are 11 tilings of a 4 X 2 rectangle using dominoes and right trominoes:
.___. .___. .___. ._._. ._._. .___. .___. .___. .___. .___. .___.
|___| |___| |_._| | | | | | | |___| |___| | ._| |_. | | ._| |_. |
|___| |_._| | | | |_|_| |_|_| | ._| |_. | |_| | | |_| |_| | | |_|
|___| | | | |_|_| |___| | | | |_| | | |_| |___| |___| | |_| |_| |
|___| |_|_| |___| |___| |_|_| |___| |___| |___| |___| |___| |___| .
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (4, 21, -25, -65, -17, 24, -11, -15, 9).
-
a:= n-> (Matrix([[619773, 96139, 15171, 2319, 380, 55, 11, 1, 1]]). Matrix(9, (i,j)-> if i=j-1 then 1 elif j=1 then [4, 21, -25, -65, -17, 24, -11, -15, 9][i] else 0 fi)^n)[1,9]: seq(a(n), n=0..25);
-
a[n_] := {619773, 96139, 15171, 2319, 380, 55, 11, 1, 1} . MatrixPower[ Table[ Which[i == j-1, 1, j == 1, {4, 21, -25, -65, -17, 24, -11, -15, 9}[[i]], True, 0], {i, 1, 9}, {j, 1, 9}], n] // Last; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 04 2013, translated and adapted from Alois P. Heinz's Maple program *)
A232497
Number of tilings of a 4 X n rectangle using L and Z tetrominoes.
Original entry on oeis.org
1, 0, 2, 6, 14, 32, 102, 238, 652, 1696, 4480, 11658, 30870, 80644, 212292, 556858, 1463390, 3840686, 10090218, 26490280, 69575414, 182693434, 479789138, 1259906496, 3308668718, 8688615148, 22817011182, 59918425698, 157349755400, 413208421354, 1085110433096
Offset: 0
a(3) = 6:
._._._. ._._._. ._._._. ._._._. ._._._. ._._._.
| .___| |___. | | |_. | | ._| | | .___| |___. |
|_| ._| |_. |_| |_. | | | | ._| |_| | | | | |_|
|___| | | |___| | |_|_| |_|_| | | ._| | | |_. |
|_____| |_____| |_____| |_____| |_|___| |___|_|.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Nicolas Bělohoubek and Antonín Slavík, L-Tetromino Tilings and Two-Color Integer Compositions, Univ. Karlova (Czechia, 2025). See p. 10.
- Wikipedia, Tetromino
- Index entries for linear recurrences with constant coefficients, signature (0,5,7,2,-13,-13,-6,-6,0,-4,0,-2).
-
a:= n-> coeff(series(-(x^6-x^5-2*x^4+x^3+3*x^2-1)/
(2*x^12+4*x^10+6*x^8+6*x^7+13*x^6+13*x^5-2*x^4-7*x^3-5*x^2+1),
x, n+1), x, n);
seq(a(n), n=0..40);
A233191
Number of tilings of a 4 X n rectangle using L and T tetrominoes.
Original entry on oeis.org
1, 0, 2, 4, 12, 16, 76, 128, 386, 832, 2368, 5024, 13946, 31680, 82632, 193696, 498174, 1182464, 2993384, 7213648, 18061074, 43832960, 109163384, 266217472, 660116398, 1615451648, 3995295112, 9796774896, 24189684402, 59396496000, 146494223160, 360026507808
Offset: 0
a(3) = 4:
._____. ._____. ._____. ._____.
|_. ._| |_. ._| | |_. | | ._| |
| |_| | | |_| | | ._| | | |_. |
| ._| | | |_. | |_| |_| |_| |_|
|_|___| |___|_| |_____| |_____|.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Nicolas Bělohoubek and Antonín Slavík, L-Tetromino Tilings and Two-Color Integer Compositions, Univ. Karlova (Czechia, 2025). See p. 10.
- Wikipedia, Tetromino
- Index entries for linear recurrences with constant coefficients, signature (0, 4, 4, 5, -8, 4, 12, -18, -8, 0, 0, -8).
-
gf:= (2*x^6+x^4+2*x^2-1) / (-8*x^12 -8*x^9 -18*x^8
+12*x^7 +4*x^6 -8*x^5 +5*x^4 +4*x^3 +4*x^2 -1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
A233266
Number of tilings of a 4 X n rectangle using tetrominoes of shapes L, T, Z.
Original entry on oeis.org
1, 0, 2, 10, 24, 70, 276, 820, 2616, 8702, 27902, 89500, 291050, 939222, 3029950, 9798606, 31657182, 102237766, 330356240, 1067310022, 3447911968, 11139391996, 35988377472, 116265759012, 375619824338, 1213515477460, 3920484872552, 12665878390278
Offset: 0
a(3) = 10:
._____. ._____. ._____. ._____. ._____.
| |_. | | ._| | | .___| |___. | | .___|
|_. | | | | ._| |_| | | | | |_| |_| ._|
| |_|_| |_|_| | | ._| | | |_. | |___| |
|_____| |_____| |_|___| |___|_| |_____|
._____. ._____. ._____. ._____. ._____.
| ._| | | |_. | |_. ._| |_. ._| |___. |
| |_. | | ._| | | |_| | | |_| | |_. |_|
|_| |_| |_| |_| | |_. | | ._| | | |___|
|_____| |_____| |___|_| |_|___| |_____|.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Nicolas Bělohoubek and Antonín Slavík, L-Tetromino Tilings and Two-Color Integer Compositions, Univ. Karlova (Czechia, 2025). See p. 10.
- Wikipedia, Tetromino
- Index entries for linear recurrences with constant coefficients, signature (2, 4, 4, -6, -28, 15, 4, -13, 20, -4, 16, -10, 8, -2).
A165799
Number of tilings of a 4 X n rectangle using right trominoes and 2 X 2 tiles.
Original entry on oeis.org
1, 0, 1, 4, 6, 16, 37, 92, 245, 560, 1426, 3720, 9069, 22808, 58177, 145660, 366318, 925536, 2331269, 5872212, 14802941, 37311528, 94038250, 236999064, 597348237, 1505640016, 3794761257, 9564393972, 24106951622, 60759989040, 153141435269, 385986293964
Offset: 0
a(4) = 6, because there are 6 tilings of a 4 X 4 rectangle using right trominoes and 2 X 2 tiles:
.___.___. .___.___. .___.___. .___.___. .___.___. .___.___.
| . | . | | ._|_. | | ._| . | | ._|_. | | ._|_. | | . |_. |
|___|___| |_| . |_| |_| |___| |_| ._|_| |_|_. |_| |___| |_|
| . | . | | |___| | | |___| | | |_| . | | . |_| | | |___| |
|___|___| |___|___| |___|___| |___|___| |___|___| |___|___|
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,9,1,-3,-22,-16,0,-4).
-
a:= n-> (Matrix([[4, 1, 0, 1, 0$5]]). Matrix(9, (i,j)-> if i=j-1 then 1 elif j=1 then [1, 1, 9, 1, -3, -22, -16, 0, -4][i] else 0 fi)^n)[1,4]: seq(a(n), n=0..30);
-
Series[ (-6*x^3 - x + 1) / (4*x^9 + 16*x^7 + 22*x^6 + 3*x^5 - x^4 - 9*x^3 - x^2 - x + 1), {x, 0, 31}] // CoefficientList[#, x] & (* Jean-François Alcover, Jun 18 2013, after Alois P. Heinz *)
LinearRecurrence[{1,1,9,1,-3,-22,-16,0,-4},{1,0,1,4,6,16,37,92,245},40] (* Harvey P. Dale, Nov 09 2024 *)
A233139
Number of tilings of a 4 X n rectangle using T and Z tetrominoes.
Original entry on oeis.org
1, 0, 0, 0, 2, 4, 8, 18, 44, 104, 242, 564, 1320, 3090, 7228, 16904, 39538, 92484, 216328, 506002, 1183564, 2768424, 6475506, 15146580, 35428712, 82869778, 193837148, 453396168, 1060519538, 2480615780, 5802302024, 13571915922, 31745486700, 74254506984
Offset: 0
a(5) = 4:
._____.___. .___._____. ._._____._. ._._____._.
|_. ._| ._| |_. |_. ._| | |_. ._| | | |_. ._| |
| |_|___| | | |___|_| | | ._|_|_. | | ._|_|_. |
| ._| |_. | | ._| |_. | |_| |_. |_| |_| ._| |_|
|_|_____|_| |_|_____|_| |_____|___| |___|_____|.
-
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <2|1|0|2>>^n.
<<1, 0, 0, 0>>)[1, 1]:
seq(a(n), n=0..40);
A242636
Number of tilings of a 4 X n rectangle using tetrominoes of shapes L, Z, O.
Original entry on oeis.org
1, 0, 3, 12, 23, 94, 289, 842, 2771, 8510, 26411, 83122, 258199, 805914, 2517287, 7846960, 24490017, 76416244, 238387767, 743840496, 2320800841, 7240890040, 22592311143, 70488834118, 219928631821, 686190651342, 2140948175385, 6679872756528, 20841562274863
Offset: 0
a(3) = 12:
._____. ._____. .___._. ._.___. ._____. ._____.
| .___| |___. | | | | | | | |___. | | .___|
|_|_. | | ._|_| |___| | | |___| | |_| |_| |
| | | | | | | |___| |___| | |___| | | |___|
|___|_| |_|___| |_____| |_____| |_____| |_____|
._____. ._____. ._.___. .___._. ._____. ._____.
| .___| |___. | | |_. | | ._| | | .___| |___. |
|_| ._| |_. |_| |_. | | | | ._| |_| | | | | |_|
|___| | | |___| | |_|_| |_|_| | | ._| | | |_. |
|_____| |_____| |_____| |_____| |_|___| |___|_|.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Nicolas Bělohoubek and Antonín Slavík, L-Tetromino Tilings and Two-Color Integer Compositions, Univ. Karlova (Czechia, 2025). See p. 10.
- Wikipedia, Tetromino
- Index entries for linear recurrences with constant coefficients, signature (0,6,13,3,-18,-13,-3,1,-2,-4,0,-2).
-
gf:= (x^6-x^5-2*x^4+x^3+3*x^2-1) / (-2*x^12 -4*x^10 -2*x^9 +x^8 -3*x^7 -13*x^6 -18*x^5 +3*x^4 +13*x^3 +6*x^2 -1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
Showing 1-9 of 9 results.