cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183356 One quarter the number of n X 4 1..4 arrays with no two neighbors of any element equal to each other.

Original entry on oeis.org

36, 576, 1296, 3600, 9216, 24336, 63504, 166464, 435600, 1140624, 2985984, 7817616, 20466576, 53582400, 140280336, 367258896, 961496064, 2517229584, 6590192400, 17253347904, 45169851024, 118256205456, 309598765056, 810540090000
Offset: 1

Views

Author

R. H. Hardin, Jan 04 2011

Keywords

Comments

Column 4 of A183362.

Examples

			Some solutions for 5 X 4 with a(1,1)=1:
  1 4 3 3    1 1 4 4    1 2 4 1    1 4 2 2    1 1 3 4
  2 4 1 1    4 2 3 1    3 2 4 1    1 4 3 3    2 2 3 1
  3 3 2 2    4 2 3 1    4 1 3 3    3 2 1 1    3 4 4 2
  1 1 4 4    3 1 4 4    4 1 2 2    3 2 4 4    3 1 1 3
  4 2 3 1    3 1 2 2    2 3 4 1    1 1 3 2    4 2 2 4
		

Crossrefs

Cf. A183362.

Formula

Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3) for n>4.
Conjectures from Colin Barker, Mar 28 2018: (Start)
G.f.: 36*x*(1 + 14*x + 2*x^2 - 3*x^3) / ((1 + x)*(1 - 3*x + x^2)).
a(n) = (9/5)*2^(3-n)*((-1)^n*2^(2+n) + (3-sqrt(5))^(1+n) + (3+sqrt(5))^(1+n)) for n>1.
(End)
Assuming Colin Barker's conjectures, a(n) = (12*Fibonacci(n+1))^2, n>1. - Ehren Metcalfe, Apr 21 2018