A183560 Number of partitions of n containing a clique of size 3.
1, 0, 1, 2, 3, 3, 6, 8, 13, 15, 24, 30, 44, 54, 77, 98, 134, 165, 222, 279, 367, 454, 588, 731, 936, 1148, 1454, 1788, 2241, 2732, 3400, 4140, 5106, 6183, 7579, 9157, 11156, 13406, 16249, 19482, 23489, 28042, 33666, 40087, 47914, 56851
Offset: 3
Keywords
Examples
a(9) = 6, because 6 partitions of 9 contain (at least) one clique of size 3: [1,1,1,2,2,2], [2,2,2,3], [1,1,1,3,3], [3,3,3], [1,1,1,2,4], [1,1,1,6].
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0], add((l->`if`(j=3, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i))) end: a:= n-> (l-> l[2])(b(n, n)): seq(a(n), n=3..50);
-
Mathematica
max = 50; f = (1 - Product[1 - x^(3j) + x^(4j), {j, 1, max}])/Product[1 - x^j, {j, 1, max}]; s = Series[f, {x, 0, max}]; Drop[CoefficientList[s, x], 3] (* Jean-François Alcover, Oct 01 2014 *)
Formula
G.f.: (1-Product_{j>0} (1-x^(3*j)+x^(4*j))) / (Product_{j>0} (1-x^j)).
Comments