A183562 Number of partitions of n containing a clique of size 5.
1, 0, 1, 1, 2, 3, 5, 5, 9, 11, 16, 21, 31, 36, 52, 65, 88, 110, 148, 180, 238, 295, 379, 469, 600, 731, 926, 1133, 1413, 1725, 2141, 2590, 3194, 3864, 4719, 5692, 6924, 8301, 10049, 12026, 14468, 17263, 20694, 24586, 29359, 34804, 41372
Offset: 5
Keywords
Examples
a(11) = 5, because 5 partitions of 11 contain (at least) one clique of size 5: [1,1,1,1,1,2,2,2], [1,2,2,2,2,2], [1,1,1,1,1,3,3], [1,1,1,1,1,2,4], [1,1,1,1,1,6].
Links
- Alois P. Heinz, Table of n, a(n) for n = 5..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0], add((l->`if`(j=5, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i))) end: a:= n-> (l-> l[2])(b(n, n)): seq(a(n), n=5..55);
-
Mathematica
max = 55; f = (1 - Product[1 - x^(5j) + x^(6j), {j, 1, max}])/Product[1 - x^j, {j, 1, max}]; s = Series[f, {x, 0, max}]; Drop[CoefficientList[s, x], 5] (* Jean-François Alcover, Oct 01 2014 *) Table[Count[IntegerPartitions[n,{5,PartitionsP[n]}],?(MemberQ[ Length/@ Split[ #],5]&)],{n,5,60}] (* _Harvey P. Dale, Feb 02 2019 *)
Formula
G.f.: (1-Product_{j>0} (1-x^(5*j)+x^(6*j))) / (Product_{j>0} (1-x^j)).
Comments