A183563 Number of partitions of n containing a clique of size 6.
1, 0, 1, 1, 2, 2, 5, 5, 8, 10, 15, 18, 27, 33, 47, 57, 78, 96, 129, 159, 208, 258, 330, 407, 517, 635, 798, 978, 1217, 1482, 1833, 2225, 2729, 3303, 4028, 4856, 5885, 7070, 8528, 10211, 12259, 14628, 17494, 20800, 24777, 29378, 34867
Offset: 6
Keywords
Examples
a(10) = 2, because 2 partitions of 10 contain (at least) one clique of size 6: [1,1,1,1,1,1,2,2], [1,1,1,1,1,1,4].
Links
- Alois P. Heinz, Table of n, a(n) for n = 6..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0], add((l->`if`(j=6, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i))) end: a:= n-> (l-> l[2])(b(n, n)): seq(a(n), n=6..55);
-
Mathematica
max = 55; f = (1 - Product[1 - x^(6j) + x^(7j), {j, 1, max}])/Product[1 - x^j, {j, 1, max}]; s = Series[f, {x, 0, max}]; Drop[CoefficientList[s, x], 6] (* Jean-François Alcover, Oct 01 2014 *)
Formula
G.f.: (1-Product_{j>0} (1-x^(6*j)+x^(7*j))) / (Product_{j>0} (1-x^j)).
Comments