cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183566 Number of partitions of n containing a clique of size 9.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 7, 9, 13, 15, 23, 27, 38, 47, 63, 77, 103, 126, 165, 201, 258, 315, 401, 487, 611, 743, 924, 1118, 1382, 1664, 2041, 2455, 2989, 3583, 4340, 5185, 6248, 7446, 8930, 10604, 12668, 15002, 17848, 21083, 24987, 29435, 34776, 40860
Offset: 9

Views

Author

Alois P. Heinz, Jan 05 2011

Keywords

Comments

All parts of a number partition with the same value form a clique. The size of a clique is the number of elements in the clique.

Examples

			a(12) = 1, because 1 partition of 12 contains (at least) one clique of size 9: [1,1,1,1,1,1,1,1,1,3].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
          add((l->`if`(j=9, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> (l-> l[2])(b(n, n)):
    seq(a(n), n=9..60);
  • Mathematica
    max=60;f=(1-Product[1-x^(9j)+x^(10j),{j,1,max}])/Product[1-x^j,{j,1,max}]; s=Series[f,{x,0,max}]; Drop[CoefficientList[s,x],9] (* Jean-François Alcover, Oct 01 2014 *)

Formula

G.f.: (1-Product_{j>0} (1-x^(9*j)+x^(10*j))) / (Product_{j>0} (1-x^j)).
a(n) = A000041(n) - A184644(n). - Vaclav Kotesovec, Jun 12 2025