A183566 Number of partitions of n containing a clique of size 9.
1, 0, 1, 1, 2, 2, 4, 4, 7, 9, 13, 15, 23, 27, 38, 47, 63, 77, 103, 126, 165, 201, 258, 315, 401, 487, 611, 743, 924, 1118, 1382, 1664, 2041, 2455, 2989, 3583, 4340, 5185, 6248, 7446, 8930, 10604, 12668, 15002, 17848, 21083, 24987, 29435, 34776, 40860
Offset: 9
Keywords
Examples
a(12) = 1, because 1 partition of 12 contains (at least) one clique of size 9: [1,1,1,1,1,1,1,1,1,3].
Links
- Alois P. Heinz, Table of n, a(n) for n = 9..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0], add((l->`if`(j=9, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i))) end: a:= n-> (l-> l[2])(b(n, n)): seq(a(n), n=9..60);
-
Mathematica
max=60;f=(1-Product[1-x^(9j)+x^(10j),{j,1,max}])/Product[1-x^j,{j,1,max}]; s=Series[f,{x,0,max}]; Drop[CoefficientList[s,x],9] (* Jean-François Alcover, Oct 01 2014 *)
Formula
G.f.: (1-Product_{j>0} (1-x^(9*j)+x^(10*j))) / (Product_{j>0} (1-x^j)).
Comments