A183608 G.f.: A(x) = Sum_{n>=0} x^n * C(x)^(n^2), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
1, 1, 2, 7, 29, 133, 658, 3471, 19400, 114417, 709815, 4619048, 31446579, 223419752, 1652599036, 12698380493, 101151995810, 833740791381, 7098646227614, 62335051895044, 563749889969108, 5244173616702347, 50117689766439784
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 29*x^4 + 133*x^5 + 658*x^6 +...
Programs
-
Mathematica
Flatten[{1,Table[Sum[Binomial[(n-k)^2+2*k, k] * (n-k)^2/((n-k)^2 + 2*k),{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Mar 06 2014 *)
-
PARI
{a(n)=if(n<0,0,0^n+sum(k=0, n-1, binomial((n-k)^2+2*k, k)*(n-k)^2/((n-k)^2+2*k)))}
Formula
a(n) = Sum_{k=0..n-1} binomial((n-k)^2+2k, k) * (n-k)^2/((n-k)^2 + 2k) for n>0 with a(0)=1.
G.f.: A(x) = Sum_{n>=0} x^n*C(x)^n*Product_{k=1..n} (1-x*C(x)^(4*k-3))/(1-x*C(x)^(4*k-1)) where C(x) = 1 + x*C(x)^2.
Let q = C(x) = 1 + x*C(x)^2, then g.f. A(x) equals the continued fraction:
A(x) = 1/(1- q*x/(1- q*(q^2-1)*x/(1- q^5*x/(1- q^3*(q^4-1)*x/(1- q^9*x/(1- q^5*(q^6-1)*x/(1- q^13*x/(1- q^7*(q^8-1)*x/(1- ...)))))))))
due to an identity of a partial elliptic theta function.
G.f.: A(x) = 1 + x*C(x)* G( x*C(x)^2 ), where G(x) = Sum_{k>=0} x^k*(1+x)^(k^2) is the g.f. of A121689.