cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183613 a(n) = 3^^(n+1) modulo 10^n.

Original entry on oeis.org

7, 87, 387, 5387, 95387, 195387, 4195387, 64195387, 464195387, 2464195387, 62464195387, 262464195387, 7262464195387, 27262464195387, 627262464195387, 5627262464195387, 75627262464195387, 575627262464195387, 4575627262464195387, 4575627262464195387
Offset: 1

Views

Author

Max Alekseyev, Sep 08 2011

Keywords

Comments

Backward concatenation of A133613.
For all m>n, 3^^m == 3^^(n+1) (mod 10^n). Hence, each term represents the tailing decimal digits of 3^^m for all sufficiently large m.

References

  • M. RipĂ , La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 11-12, 69-78. ISBN 978-88-6178-789-6.

Formula

For n>1, a(n) = 3^a(n-1) mod 10^n.