cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183729 T(n,k) = 1/12 the number of (n+1) X (k+1) 0..5 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.

Original entry on oeis.org

0, 1, 1, 12, 2, 12, 87, 29, 29, 87, 537, 388, 124, 388, 537, 3070, 4170, 1790, 1790, 4170, 3070, 16731, 41423, 30939, 14886, 30939, 41423, 16731, 88331, 388998, 525895, 272215, 272215, 525895, 388998, 88331, 455804, 3528126, 8439116, 7319684
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Adjacent blocks have the same sense when one uses a gap in a shared side as a fall and the other uses it as an increase.
Table starts
.......0.........1..........12............87.............537..............3070
.......1.........2..........29...........388............4170.............41423
......12........29.........124..........1790...........30939............525895
......87.......388........1790.........14886..........272215...........7319684
.....537......4170.......30939........272215.........3723606.........112949014
....3070.....41423......525895.......7319684.......112949014........2740758406
...16731....388998.....8439116.....200260149......4858574535......134020420595
...88331...3528126...130610844....5355252106....221403152762.....9546147995730
..455804..31206553..1967828529..139489865583...9949950285008...729082624201394
.2311983.270945278.29070445544.3561214845505.439077020908186.55559473375122011

Examples

			Some solutions with the first block increasing clockwise for 4 X 3:
..3..4..2....4..0..5....0..1..0....4..5..4....0..2..0....3..4..3....5..2..1
..1..0..1....2..1..2....5..2..5....3..0..3....4..3..4....2..5..2....4..3..4
..2..5..2....3..0..3....4..3..4....2..1..2....5..2..5....1..0..1....5..2..5
..3..4..3....4..5..4....0..2..5....4..0..4....0..1..0....3..5..4....0..1..0
...
...R..L.......R..L.......R..L.......R..L.......R..L.......R..L.......R..L...
...L..R.......L..R.......R..L.......R..L.......L..R.......R..L.......L..R...
...L..R.......L..R.......L..R.......L..R.......L..R.......L..R.......L..R...