cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A183727 1/12 the number of (n+1) X 8 0..5 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.

Original entry on oeis.org

16731, 388998, 8439116, 200260149, 4858574535, 134020420595, 5585215240568, 460509744129719, 54842127230404464, 7095042727449540024, 920742012786042810982, 118354309394343482912431
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 7 of A183729.

Examples

			Some solutions with the first block increasing clockwise for 3 X 8:
..1..2..1..3..2..1..3..2....1..2..1..0..2..1..2..1....1..2..1..2..1..2..1..0
..0..5..0..4..5..0..4..0....0..3..4..5..4..5..4..0....0..4..5..4..5..3..4..5
..1..3..2..3..2..1..3..1....1..2..1..0..3..2..3..2....2..3..1..3..1..2..1..0
...
...R..L..R..L..L..R..L.......R..L..L..R..L..R..L.......R..L..R..L..R..L..L...
...L..R..L..R..R..L..R.......L..R..R..L..R..L..R.......L..R..L..R..L..R..R...
		

A183721 1/12 the number of (n+1) X 2 0..5 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.

Original entry on oeis.org

0, 1, 12, 87, 537, 3070, 16731, 88331, 455804, 2311983, 11571209, 57295330, 281223411, 1370286715, 6635743136, 31964799247, 153273890393, 732031932806, 3483896304443, 16529018119643, 78202676604548, 369073777749215
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 1 of A183729.

Examples

			All solutions with the first block increasing clockwise for 3 X 2:
..3..4....1..2....4..5....2..3....5..0....0..1
..2..5....0..3....3..0....1..4....4..1....5..2
..1..0....5..4....2..1....0..5....3..2....4..3
...
...R.......R.......R.......R.......R.......R...
...R.......R.......R.......R.......R.......R...
		

Crossrefs

Cf. A183729.

Formula

Empirical: a(n) = 8*a(n-1) - 11*a(n-2) - 23*a(n-3) + 6*a(n-4) + 7*a(n-5) - 2*a(n-6).
Empirical g.f.: x^2*(1 + 2*x - x^2)^2 / ((1 + x)*(1 - 5*x + 2*x^2)*(1 - 4*x - 2*x^2 + x^3)). - Colin Barker, Apr 04 2018

A183722 1/12 the number of (n+1) X 3 0..5 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.

Original entry on oeis.org

1, 2, 29, 388, 4170, 41423, 388998, 3528126, 31206553, 270945278, 2318825000, 19619049541, 164448364546, 1367755750914, 11301610770163, 92861669073522, 759320826126174, 6182626278886591, 50153160109476104, 405492870969390486
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 2 of A183729.

Examples

			Some solutions with the first block increasing clockwise for 5 X 3:
..2..4..3....4..0..3....1..4..2....1..2..1....1..2..1....1..3..2....3..5..4
..1..0..1....2..1..2....0..5..0....0..5..0....0..3..0....5..4..5....2..1..2
..2..5..2....3..0..3....1..4..1....1..4..1....5..4..5....0..3..0....3..0..3
..3..4..3....4..5..4....2..3..2....2..3..2....0..2..0....1..2..1....4..5..4
..1..5..1....1..0..2....0..4..0....5..4..1....5..3..4....4..3..5....2..1..2
...
...R..L.......R..L.......R..L.......R..L.......R..L.......R..L.......R..L...
...L..R.......L..R.......L..R.......L..R.......R..L.......L..R.......L..R...
...L..R.......L..R.......L..R.......L..R.......L..R.......L..R.......L..R...
...R..L.......R..L.......R..L.......R..L.......R..L.......R..L.......R..L...
		

Formula

Empirical: a(n)=14*a(n-1)-36*a(n-2)-115*a(n-3)+125*a(n-4)+164*a(n-5)-155*a(n-6)-29*a(n-7)+34*a(n-8)+a(n-9)-2*a(n-10).

A183723 1/12 the number of (n+1) X 4 0..5 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.

Original entry on oeis.org

12, 29, 124, 1790, 30939, 525895, 8439116, 130610844, 1967828529, 29070445544, 422988995515, 6081228134954, 86580348551185, 1222760452357981, 17151917685428842, 239202719875959959, 3319294757106439138
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 3 of A183729.

Examples

			Some solutions with the first block increasing clockwise for 3 X 4:
..4..5..4..3....1..2..1..0....3..5..4..3....4..5..0..5....0..1..0..5
..1..0..1..2....0..3..4..5....1..0..1..2....3..2..1..2....3..2..3..4
..4..5..4..3....1..2..1..0....3..5..4..3....4..5..0..4....4..1..0..5
...
...R..L..L.......R..L..L.......R..L..L.......R..R..L.......R..L..L...
...L..R..R.......L..R..R.......L..R..R.......L..L..R.......L..R..R...
		

Formula

Empirical: a(n)=22*a(n-1)-8*a(n-2)-2038*a(n-3)+4849*a(n-4)+60267*a(n-5)-204061*a(n-6)-712337*a(n-7)+3325947*a(n-8)+3154325*a(n-9)-27076488*a(n-10)+4020761*a(n-11)+122413547*a(n-12)-93348742*a(n-13)-325835425*a(n-14)+402806197*a(n-15)+514609889*a(n-16)-925150963*a(n-17)-439511369*a(n-18)+1310144478*a(n-19)+86470889*a(n-20)-1199641648*a(n-21)+219926386*a(n-22)+717789749*a(n-23)-257447414*a(n-24)-276848427*a(n-25)+139910715*a(n-26)+66195171*a(n-27)-44059046*a(n-28)-8998172*a(n-29)+8348721*a(n-30)+522019*a(n-31)-936761*a(n-32)+15437*a(n-33)+58686*a(n-34)-3505*a(n-35)-1816*a(n-36)+147*a(n-37)+21*a(n-38)-2*a(n-39).

A183724 1/12 the number of (n+1) X 5 0..5 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.

Original entry on oeis.org

87, 388, 1790, 14886, 272215, 7319684, 200260149, 5355252106, 139489865583, 3561214845505, 89499710973670, 2221523267475056, 54589402697720455, 1330321340313497085, 32193928583886647023, 774480659129262018036
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 4 of A183729.

Examples

			Some solutions with the first block increasing clockwise for 3 X 5:
..0..1..2..1..2....2..4..3..2..4....0..1..2..1..2....5..0..4..5..0
..5..4..3..5..4....1..5..0..1..0....5..4..3..5..3....2..1..3..2..1
..0..1..2..1..2....2..4..3..2..3....0..1..2..0..2....3..0..4..5..0
...
...R..R..L..R.......R..L..L..R.......R..R..L..R.......R..L..R..R...
...L..L..R..L.......L..R..R..L.......L..L..R..L.......L..R..L..L...
		

A183725 1/12 the number of (n+1) X 6 0..5 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.

Original entry on oeis.org

537, 4170, 30939, 272215, 3723606, 112949014, 4858574535, 221403152762, 9949950285008, 439077020908186, 19070687313534907, 817844594324788300, 34712759917922473170, 1460861248287305883035, 61042039866448977229798
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 5 of A183729.

Examples

			Some solutions with the first block increasing clockwise for 3 X 6:
..0..1..0..5..0..3....2..3..1..2..3..1....0..1..5..0..1..4....1..2..0..1..2..0
..3..2..3..4..1..2....0..5..0..5..4..5....4..3..4..3..2..3....4..3..5..4..3..5
..4..1..0..5..0..4....3..4..1..2..3..1....5..1..5..0..1..0....0..2..0..1..2..0
...
...R..L..L..R..L.......R..L..R..R..L.......R..L..R..R..L.......R..L..R..R..L...
...L..R..R..L..R.......L..R..L..L..R.......L..R..L..L..R.......L..R..L..L..R...
		

A183726 1/12 the number of (n+1) X 7 0..5 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.

Original entry on oeis.org

3070, 41423, 525895, 7319684, 112949014, 2740758406, 134020420595, 9546147995730, 729082624201394, 55559473375122011, 4177316401273489526, 310180873007618124181, 22791464284740341972598, 1660173775969136404275224
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 6 of A183729.

Examples

			Some solutions with the first block increasing clockwise for 3 X 7:
..1..2..0..1..2..0..1....1..2..3..1..2..1..2....2..5..4..3..4..1..2
..4..3..5..4..3..5..4....0..5..4..0..4..0..4....1..0..1..2..5..0..5
..0..1..0..1..2..0..2....1..2..3..1..3..1..3....3..5..4..3..4..2..3
...
...R..L..R..R..L..R.......R..R..L..R..L..R.......R..L..L..R..L..R...
...L..R..L..L..R..L.......L..L..R..L..R..L.......L..R..R..L..R..L...
		

A183720 1/12 the number of (n+1) X (n+1) 0..5 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.

Original entry on oeis.org

0, 2, 124, 14886, 3723606, 2740758406, 5585215240568, 33429749952933774, 583208471844467888006
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Diagonal of A183729.

Examples

			Some solutions with the first block increasing clockwise for 3 X 3:
..5..0..1....1..2..3....4..5..4....2..3..2....0..1..2....5..0..5....3..4..3
..4..3..2....0..5..4....3..0..3....1..4..1....5..4..3....4..1..4....2..5..2
..5..0..1....1..2..3....2..1..2....0..5..0....0..1..2....3..2..3....1..0..1
...
...R..R.......R..R.......R..L.......R..L.......R..R.......R..L.......R..L...
...L..L.......L..L.......R..L.......R..L.......L..L.......R..L.......R..L...
		

A183728 1/12 the number of (n+1) X 9 0..5 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.

Original entry on oeis.org

88331, 3528126, 130610844, 5355252106, 221403152762, 9546147995730, 460509744129719, 33429749952933774, 4646656755908387234, 935845545638421963156
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 8 of A183729.

Examples

			Some solutions with the first block increasing clockwise for 3 X 9:
..1..2..1..0..1..5..2..5..1....1..2..1..0..1..0..1..4..5
..0..3..4..5..2..4..3..4..3....0..3..4..5..3..4..2..3..2
..1..2..1..0..1..5..2..1..2....1..2..1..0..1..5..1..5..1
...
...R..L..L..R..L..R..L..R.......R..L..L..R..L..R..L..R...
...L..R..R..L..R..L..R..L.......L..R..R..L..R..L..R..L...
		

Crossrefs

Cf. A183729.
Showing 1-9 of 9 results.