A183712 1/20 of the number of (n+1) X 3 0..4 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease.
5, 17, 54, 174, 559, 1797, 5776, 18566, 59677, 191821, 616574, 1981866, 6370351, 20476345, 65817520, 211558554, 680016837, 2185791545, 7025832918, 22583273462, 72589861759, 233327025821, 749987665760, 2410700161342, 7748761123965, 24906995867477
Offset: 1
Examples
Some solutions for 5 X 3: ..0..1..4....1..2..0....4..0..4....4..3..4....4..0..4....1..4..0....3..4..2 ..3..2..3....0..3..4....2..1..3....0..2..0....3..2..3....2..3..1....1..0..1 ..4..1..0....1..2..1....4..0..4....4..3..4....0..1..0....0..4..0....2..4..3 ..3..2..3....0..3..4....3..2..3....0..2..1....4..2..3....1..3..1....1..0..1 ..4..0..4....1..2..1....4..1..0....4..3..0....0..1..0....0..4..0....2..3..2 ... ...R..L.......R..L.......R..L.......L..R.......R..L.......L..R.......R..L... ...L..R.......L..R.......L..R.......R..L.......L..R.......R..L.......L..R... ...R..L.......R..L.......R..L.......L..R.......R..L.......L..R.......R..L... ...L..R.......L..R.......L..R.......R..L.......L..R.......R..L.......L..R...
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (3,1,-1).
Programs
-
PARI
a(n)=([0,1,1;1,1,1;1,1,2]^(n+2))[1,1] \\ Charles R Greathouse IV, Sep 15 2014
-
PARI
Vec(x*(5+2*x-2*x^2)/(1-3*x-x^2+x^3) + O(x^50)) \\ Colin Barker, Mar 16 2016
Formula
a(n) = 3*a(n-1) + a(n-2) - a(n-3).
The top left element of A^(n+2) where A=(0,1,1;1,1,1;1,1,2). - David Neil McGrath, Sep 04 2014
a(n) ~ c*k^n where k = 1.629316... is the largest root of x^3 - 3x^2 - x + 1 and c = 1.6293... is conjecturally the largest root of 148x^3 - 296x^2 + 90x - 1. - Charles R Greathouse IV, Sep 15 2014
G.f.: x*(5+2*x-2*x^2) / (1-3*x-x^2+x^3). - Colin Barker, Mar 16 2016
Comments