A184018 Expansion of c(x/(1-x-x^2)) / (1-x-x^2), c(x) the g.f. of A000108.
1, 2, 6, 19, 67, 254, 1017, 4236, 18168, 79680, 355635, 1609912, 7373401, 34102976, 159055728, 747211753, 3532452169, 16792693562, 80224098381, 384948157635, 1854469572120, 8965866981294, 43488834409737, 211569299607282
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Programs
-
Maple
A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc: A037027 := proc(n,m) add( binomial(m+k,m)*binomial(k,n-k-m),k=0..n-m) ; end proc: A184018 := proc(n) add( A037027(n,k)*A000108(k),k=0..n) ; end proc: seq(A184018(n),n=0..10) ; # R. J. Mathar, Jan 11 2011
-
Mathematica
CoefficientList[Series[(1 - x - x^2 - Sqrt[1 - 6 x + 3 x^2 + 6 x^3 + x^4])/(2 x (1 - x - x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 04 2014 *)
-
PARI
{a(n)=polcoeff((1-sqrt(1-4*x/(1-x-x^2 +O(x^(n+2)))))/(2*x),n)} /* Paul D. Hanna, Sep 06 2011 */
Formula
G.f.: ( 1 - x - x^2 - sqrt((1 - x - x^2)*(1 - 5*x - x^2)) )/( 2*x*(1 - x - x^2) ).
G.f.: 1/(1 - x - x^2 - x/(1-x/(1 - x - x^2 - x/(1-x/(1 - x - x^2 - x/(1-x/(1 - x - x^2 - x/(1-x/(1-... (continued fraction).
a(n) = Sum_{k=0..n} (Sum_{j=0..n-k} binomial(k+j,k)*binomial(j,n-k-j))*A000108(k) = Sum_{k=0..n} A037027(n,k)*A000108(k).
G.f. satisfies A(x) = 1/(1-x-x^2) + x*A(x)^2. - Paul D. Hanna, Sep 06 2011
Conjecture: (n+1)*a(n) + 2*(1-3*n)*a(n-1) + 3*(n-1)*a(n-2) + 2*(3*n-5)*a(n-3) + (n-3)*a(n-4) = 0. - R. J. Mathar, Nov 15 2011
a(n) ~ (27+5*sqrt(29)) * sqrt(54*sqrt(29)-290) * (5+sqrt(29))^n / (sqrt(Pi) * n^(3/2) * 2^(n+5)). - Vaclav Kotesovec, Feb 04 2014
Comments