A184030 1/16 the number of (n+1) X (n+1) 0..3 arrays with all 2 X 2 subblocks having the same four values.
16, 40, 82, 166, 322, 634, 1234, 2434, 4786, 9490, 18802, 37426, 74482, 148594, 296434, 592114, 1182706, 2363890, 4724722, 9446386, 18886642, 37767154, 75522034, 151031794, 302039026, 604053490, 1208057842, 2416066546, 4832034802, 9663971314, 19327746034, 38655295474
Offset: 1
Examples
Some solutions for 4X4 ..1..3..1..1....3..0..3..0....2..2..2..2....0..0..0..0....1..0..0..0 ..1..1..1..3....0..1..0..1....1..3..1..3....2..2..2..2....0..2..1..2 ..1..3..1..1....0..3..0..3....2..2..2..2....0..0..0..0....1..0..0..0 ..1..1..1..3....1..0..1..0....3..1..3..1....2..2..2..2....0..2..1..2
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,-6,4).
Crossrefs
Diagonal of A184039.
Programs
-
PARI
Vec(2*(8 - 4*x - 19*x^2 + 8*x^3)/((1 - x)*(1 - 2*x)*(1 - 2*x^2)) + O(x^30)) \\ Andrew Howroyd, Mar 09 2024
Formula
From Andrew Howroyd, Mar 09 2024: (Start)
a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4).
G.f.: 2*x*(8 - 4*x - 19*x^2 + 8*x^3)/((1 - x)*(1 - 2*x)*(1 - 2*x^2)). (End)
Extensions
a(14) onwards from Andrew Howroyd, Mar 09 2024