cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184117 Lower s-Wythoff sequence, where s(n) = 2n + 1.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30, 32, 33, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 56, 57, 59, 60, 61, 63, 64, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83, 84, 85, 87, 88, 90, 91, 93, 94, 95, 97, 98, 100, 101, 102, 104, 105, 107, 108, 110, 111, 112, 114, 115, 117, 118, 119, 121, 122, 124, 125, 126, 128, 129, 131, 132, 134, 135, 136, 138, 139, 141
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2011

Keywords

Comments

Suppose that s(n) is a nondecreasing sequence of positive integers. The lower and upper s(n)-Wythoff sequences, a and b, are introduced here. Define
a(1) = 1; b(1) = s(1) + a(1); and for n>=2,
a(n) = least positive integer not in {a(1),...,a(n-1),b(1),...,b(n-1)},
b(n) = s(n) + a(n).
Clearly, a and b are complementary. If s(n)=n, then
a=A000201, the lower Wythoff sequence, and
b=A001950, the upper Wythoff sequence.
A184117 is chosen to represent the class of s-Wythoff sequences for which s is an arithmetic sequence given by s(n) = kn - r. Such sequences (lower and upper) are indexed in the OEIS as shown here:
n+1....A026273...A026274
n......A000201...A001950 (the classical Wythoff sequences)
2n+1...A184117...A184118
2n.....A001951...A001952
2n-1...A136119...A184119
3n+1...A184478...A184479
3n.....A184480...A001956
3n-1...A184482...A184483
3n-2...A184484...A184485
4n+1...A184486...A184487
4n.....A001961...A001962
4n-1...A184514...A184515
The pattern continues for A184516 to A184531.
s-Wythoff sequences for choices of s other than arithmetic sequences include these:
A184419 and A184420 (s = lower Wythoff sequence)
A184421 and A184422 (s = upper Wythoff sequence)
A184425 and A184426 (s = triangular numbers)
A184427 and A184428 (s = squares)
A036554 and A003159 (invariant and limiting sequences).

Examples

			s=(3,5,7,9,11,13,...);
a=(1,2,3,5,6,8,...);
b=(4,7,10,14,17,21,...).
		

Crossrefs

Programs

  • Mathematica
    k=2; r=-1;
    mex:=First[Complement[Range[1,Max[#1]+1],#1]]&;
    s[n_]:=k*n-r; a[1]=1; b[n_]:=b[n]=s[n]+a[n];
    a[n_]:=a[n]=mex[Flatten[Table[{a[i],b[i]},{i,1,n-1}]]];
    Table[s[n],{n,30}]  (* s = A005408 except for initial 1 *)
    Table[a[n],{n,100}] (* a = A184117 *)
    Table[b[n],{n,100}] (* b = A184118 *)
  • PARI
    A184117_upto(N,s(n)=2*n+1,a=[1],U=a)={while(a[#a]1&&U[2]==U[1]+1,U=U[^1]);a=concat(a,U[1]+1));a} \\ M. F. Hasler, Jan 07 2019

Formula

a(n) = A184118(n) - s(n). - M. F. Hasler, Jan 07 2019

Extensions

Removed an incorrect g.f., Alois P. Heinz, Dec 14 2012