cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184119 Upper s(n)-Wythoff sequence, where s(n) = 2n - 1; complement of A136119.

Original entry on oeis.org

2, 6, 9, 12, 16, 19, 23, 26, 30, 33, 36, 40, 43, 47, 50, 53, 57, 60, 64, 67, 70, 74, 77, 81, 84, 88, 91, 94, 98, 101, 105, 108, 111, 115, 118, 122, 125, 129, 132, 135, 139, 142, 146, 149, 152, 156, 159, 163, 166, 170, 173, 176, 180, 183, 187, 190, 193, 197, 200, 204, 207, 210, 214, 217, 221, 224, 228, 231, 234, 238, 241, 245, 248, 251, 255, 258, 262, 265, 269, 272, 275, 279, 282, 286, 289, 292, 296, 299, 303, 306, 309, 313, 316, 320, 323, 327, 330, 333, 337, 340
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2011

Keywords

Comments

See A184117 for the definition of lower and upper s(n)-Wythoff sequences.
(a(n)) is an inhomogeneous Beatty sequence, the complement of the inhomogeneous Beatty sequence (A136119(n)) = (floor(sqrt(2)*n + 1 - sqrt(2)/2)). See the paper by Fraenkel. - Michel Dekking, Jan 31 2017

Crossrefs

Programs

  • Magma
    [Floor((2+Sqrt(2))*n-Sqrt(2)/2): n in [1..80]]; // Vincenzo Librandi, Jan 31 2017
  • Mathematica
    k=2; r=1;
    mex:=First[Complement[Range[1, Max[#1]+1], #1]]&;
    s[n_]:=k*n-r; a[1]=1; b[n_]:=b[n]=s[n]+a[n];
    a[n_]:=a[n]=mex[Flatten[Table[{a[i], b[i]},{i, 1, n-1}]]];
    Table[s[n], {n, 30}]
    Table[a[n], {n, 100}]
    Table[b[n], {n, 100}]
    Table[(Floor[(2 + Sqrt[2]) n - Sqrt[2]/2]), {n, 100}] (* Vincenzo Librandi, Jan 31 2017 *)

Formula

a(n) = floor((2+sqrt(2))*n - sqrt(2)/2). - Michel Dekking, Jan 31 2017