A184162 Number of chains in the rooted tree with Matula-Goebel number n.
1, 3, 7, 5, 15, 9, 11, 7, 13, 17, 31, 11, 19, 13, 21, 9, 23, 15, 15, 19, 17, 33, 27, 13, 29, 21, 19, 15, 35, 23, 63, 11, 37, 25, 25, 17, 23, 17, 25, 21, 39, 19, 27, 35, 27, 29, 43, 15, 21, 31, 29, 23, 19, 21, 45, 17, 21, 37, 47, 25, 31, 65, 23, 13, 33, 39, 31, 27, 33, 27, 39, 19, 35, 25, 35, 19, 41, 27, 67, 23
Offset: 1
Keywords
Examples
a(5) = 15 because the rooted tree with Matula-Goebel number 5 is a path ABCD on 4 vertices and any nonempty subset of {A,B,C,D} is a chain.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- É. Czabarka, L. Székely, and S. Wagner, The inverse problem for certain tree parameters, Discrete Appl. Math., 157, 2009, 3314-3319.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- Index entries for sequences related to Matula-Goebel numbers
Crossrefs
Programs
-
Haskell
import Data.List (genericIndex) a184162 n = genericIndex a184162_list (n - 1) a184162_list = 1 : g 2 where g x = y : g (x + 1) where y = if t > 0 then 2 * a184162 t + 1 else a184162 r + a184162 s - 1 where t = a049084 x; r = a020639 x; s = x `div` r -- Reinhard Zumkeller, Sep 03 2013
-
Maple
with(numtheory): a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then 1+2*a(pi(n)) else a(r(n))+a(s(n))-1 end if end proc: seq(a(n), n = 1 .. 80);
-
Mathematica
r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; a[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, 1 + 2*a[PrimePi[n]], True, a[r[n]] + a[s[n]] - 1]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jun 24 2024, after Maple code *)
-
PARI
a(n) = my(f=factor(n)); [self()(primepi(p)) |p<-f[,1]] * f[,2]*2 + 1; \\ Kevin Ryde, Aug 25 2021
Formula
a(1)=1; if n=prime(t), then a(n)=1+2a(t); if n=r*s (r,s,>=2), then a(n)=a(r)+a(s)-1. The Maple program is based on this recursive formula.
Comments