A184176 Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n} having k adjacent blocks of size 3, i.e., blocks of the form (i,i+1,i+2) (0 <= k <= floor(n/3)).
1, 1, 2, 4, 1, 13, 2, 46, 6, 184, 18, 1, 805, 69, 3, 3840, 288, 12, 19775, 1324, 47, 1, 109180, 6578, 213, 4, 642382, 35136, 1032, 20, 4007712, 200398, 5390, 96, 1, 26399764, 1214136, 30027, 505, 5, 182939900, 7778856, 177744, 2792, 30, 1329327991, 52501052, 1112969, 16362, 170, 1
Offset: 0
Examples
T(4,1) = 2 because we have 123-4 and 1-234. Triangle starts: 1; 1; 2; 4, 1; 13, 2; 46, 6; 184, 18, 1;
Links
- Alois P. Heinz, Rows n = 0..250, flattened
Programs
-
Maple
with(combinat): q := 3: a := proc (n, k) options operator, arrow: sum((-1)^(k+j)*binomial(j, k)*binomial(n+j-j*q, j)*bell(n-j*q), j = k .. floor(n/q)) end proc: for n from 0 to 15 do seq(a(n, k), k = 0 .. floor(n/q)) end do; # yields sequence in triangular form
-
Mathematica
q = 3; a[n_, k_] := Sum[(-1)^(k+j)*Binomial[j, k]*Binomial[n+j-j*q, j]* BellB[n-j*q], {j, k, Floor[n/q]}]; Table[a[n, k], {n, 0, 15}, {k, 0, Floor[n/q]}] // Flatten (* Jean-François Alcover, Feb 22 2017, translated from Maple *)
Formula
T(n,k) = Sum_{j=k..floor(n/3)}(-1)^(k+j) * C(j,k) * C(n-2j,j) * Bell(n-3j).
Comments