A184174 Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n} having k adjacent blocks of size 2, i.e., blocks of the form (i,i+1) (0 <= k <= floor(n/2)).
1, 1, 1, 1, 3, 2, 10, 4, 1, 35, 14, 3, 139, 54, 9, 1, 611, 224, 38, 4, 2925, 1027, 171, 16, 1, 15128, 5112, 822, 80, 5, 83903, 27352, 4279, 415, 25, 1, 495929, 156392, 23826, 2272, 145, 6, 3108129, 950285, 141039, 13252, 855, 36, 1, 20565721, 6107540, 883982, 81692, 5257, 238, 7
Offset: 0
Examples
T(4,1)=4 because we have 12-3-4, 1-23-4, 1-2-34, 14-23. T(4,2)=1 because we have 12-34. Triangle starts: 1; 1; 1, 1; 3, 2; 10, 4, 1; 35, 14, 3; 139, 54, 9, 1; 611, 224, 38, 4; 2925, 1027, 171, 16, 1; 15128, 5112, 822, 80, 5; 83903, 27352, 4279, 415, 25, 1; 495929, 156392, 23826, 2272, 145, 6; 3108129, 950285, 141039, 13252, 855, 36, 1; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Programs
-
Maple
with(combinat): q := 2: a := proc (n, k) options operator, arrow: sum((-1)^(k+j)*binomial(j, k)*binomial(n+j-j*q, j)*bell(n-j*q), j = k .. floor(n/q)) end proc: for n from 0 to 13 do seq(a(n, k), k = 0 .. floor(n/q)) end do; # yields sequence in triangular form
-
Mathematica
T[n_, k_] := Sum[(-1)^(k+j)*Binomial[j, k]*Binomial[n-j, j]*BellB[n-2j], {j, k, Floor[n/2]}]; Table[T[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Feb 21 2017 *)
-
PARI
{T(n,k) = my(A = sum(m=0,n, x^m/prod(k=0,m,1 - k*x + (1-y)*x^2 +x*O(x^n)))); polcoeff(polcoeff(A,n,x),k,y)} for(n=0,12,for(k=0,n\2,print1(T(n,k),", "));print("")) \\ Paul D. Hanna, Sep 03 2017
Formula
T(n,k) = Sum_{j=k..floor(n/2)}(-1)^(k+j)*C(j,k)*C(n-j,j)*Bell(n-2j).
G.f.: A(x,y) = Sum_{n>=0} x^n / Product_{k=0..n} (1 - k*x + (1-y)*x^2). - Paul D. Hanna, Sep 03 2017
Comments