A184271 Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal binary arrays (n >= 1, k >= 1).
2, 3, 3, 4, 7, 4, 6, 14, 14, 6, 8, 40, 64, 40, 8, 14, 108, 352, 352, 108, 14, 20, 362, 2192, 4156, 2192, 362, 20, 36, 1182, 14624, 52488, 52488, 14624, 1182, 36, 60, 4150, 99880, 699600, 1342208, 699600, 99880, 4150, 60, 108, 14602, 699252, 9587580, 35792568
Offset: 1
Examples
1 2 3 4 5 6 7 ---------------------------------------------------------------------------- 1: 2 3 4 6 8 14 20 2: 3 7 14 40 108 362 1182 3: 4 14 64 352 2192 14624 99880 4: 6 40 352 4156 52488 699600 9587580 5: 8 108 2192 52488 1342208 35792568 981706832 6: 14 362 14624 699600 35792568 1908897152 104715443852 7: 20 1182 99880 9587580 981706832 104715443852 11488774559744 8: 36 4150 699252 134223976 27487816992 5864063066500 9: 60 14602 4971184 1908881900 781874936816 10: 108 52588 35792568 27487869472 From _Gus Wiseman_, Feb 04 2019: (Start) Inequivalent representatives of the T(2,3) = 14 toroidal necklaces: [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 0 1] [0 0 0] [0 0 1] [0 1 1] [1 1 1] [0 0 1] [0 1 0] [0 1 1] . [0 0 1] [0 0 1] [0 0 1] [0 1 1] [0 1 1] [0 1 1] [1 1 1] [1 0 1] [1 1 0] [1 1 1] [0 1 1] [1 0 1] [1 1 1] [1 1 1] (End)
Links
- Alois P. Heinz, Antidiagonals n = 1..100, flattened (first 95 terms from R. H. Hardin)
- S. N. Ethier, Counting toroidal binary arrays, arXiv preprint arXiv:1301.2352, 2013 and J. Int. Seq. 16 (2013) #13.4.7 .
- S. N. Ethier and Jiyeon Lee, Counting toroidal binary arrays, II, arXiv:1502.03792v1 [math.CO], Feb 12, 2015 and J. Int. Seq. 18 (2015) # 15.8.3.
- Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016.
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023.
- Wikipedia, Pólya enumeration theorem
Crossrefs
Programs
-
Mathematica
a[n_, k_] := Sum[If[Mod[n, c] == 0, Sum[If[Mod[k, d] == 0, EulerPhi[c] EulerPhi[d] 2^(n k/LCM[c, d]), 0], {d, 1, k}], 0], {c, 1, n}]/(n k) (* second program *) neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]]; Table[Length[Select[Partition[#,n-k]&/@Tuples[{0,1},(n-k)*k],neckmatQ]],{n,8},{k,n-1}] (* Gus Wiseman, Feb 04 2019 *)
Formula
T(n,k) = (1/(nk))*Sum_{ c divides n } Sum_{ d divides k } phi(c)*phi(d)*2^(nk/lcm(c,d)), where phi is A000010 and lcm stands for least common multiple. - Stewart N. Ethier, Aug 24 2012
Comments