cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A179043 Number of n X n checkered tori.

Original entry on oeis.org

1, 2, 7, 64, 4156, 1342208, 1908897152, 11488774559744, 288230376353050816, 29850020237398264483840, 12676506002282327791964489728, 21970710674130840874443091905462272, 154866286100907105149651981766316633972736
Offset: 0

Views

Author

Rouben Rostamian (rostamian(AT)umbc.edu), Jun 25 2010

Keywords

Comments

Consider an n X n checkerboard whose tiles are assigned colors 0 and 1, at random. There are 2^(n^2) such checkerboards. We identify the opposite edges of each checkerboard, thus making it into a (topological) torus. There are a(n) such (distinct) tori. It is possible to show that a(n) >= 2^(n^2)/n^2 for all n.
Main diagonal of A184271.
Main diagonal of Table 3: The number a(m, n) of toroidal m X n binary arrays, allowing rotation of the rows and/or the columns but not reflection, for m, n = 1, 2, ..., 8, at page 5 of Ethier. - Jonathan Vos Post, Jan 14 2013
This is a 2-dimensional generalization of binary necklaces (A000031). - Gus Wiseman, Feb 04 2019

Examples

			From _Gus Wiseman_, Feb 04 2019: (Start)
Inequivalent representatives of the a(2) = 7 checkered tori:
  [0 0] [0 0] [0 0] [0 1] [0 1] [0 1] [1 1]
  [0 0] [0 1] [1 1] [0 1] [1 0] [1 1] [1 1]
(End)
		

Crossrefs

Cf. A184271 (n X k toroidal binary arrays).

Programs

  • Mathematica
    a[n_] := Sum[If[Mod[n, c] == 0, Sum[If[Mod[n, d] == 0, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d]), 0], {d, 1, n}], 0], {c, 1, n}]/n ^2

Formula

a(n) = (1/n^2)*Sum_{ c divides n } Sum_{ d divides n } phi(c)*phi(d)*2^(n^2/lcm(c,d)), where phi is A000010 and lcm stands for least common multiple. - Stewart N. Ethier, Aug 24 2012

Extensions

Terms a(6) and a(7) from A184271
a(8)-a(12) from Stewart N. Ethier, Aug 24 2012
a(0)=1 prepended by Alois P. Heinz, Aug 20 2017

A192332 For n >= 3, draw a regular n-sided polygon and its n(n-3)/2 diagonals, so there are n(n-1)/2 lines; a(n) is the number of ways to choose a subset of these lines (subsets differing by a rotation are regarded as identical). a(1)=1, a(2)=2 by convention.

Original entry on oeis.org

1, 2, 4, 22, 208, 5560, 299600, 33562696, 7635498336, 3518440564544, 3275345183542208, 6148914696963883712, 23248573454127484129024, 176848577040808821410837120, 2704321280486889389864215362560, 83076749736557243209409446411255936, 5124252113632955685095523500148980125696, 634332307869315502692705867068871886072665600
Offset: 1

Views

Author

N. J. A. Sloane, Jun 28 2011

Keywords

Comments

Suggested by A192314.
Also the number of graphical necklaces with n vertices. We define a graphical necklace to be a simple graph that is minimal among all n rotations of the vertices. Alternatively, it is an equivalence class of simple graphs under rotation of the vertices. These are a kind of partially labeled graphs. - Gus Wiseman, Mar 04 2019

Examples

			From _Gus Wiseman_, Mar 04 2019: (Start)
Inequivalent representatives of the a(1) = 1 through a(4) = 22 graphical necklace edge-sets:
  {}  {}      {}              {}
      {{12}}  {{12}}          {{12}}
              {{12}{13}}      {{13}}
              {{12}{13}{23}}  {{12}{13}}
                              {{12}{14}}
                              {{12}{24}}
                              {{12}{34}}
                              {{13}{24}}
                              {{12}{13}{14}}
                              {{12}{13}{23}}
                              {{12}{13}{24}}
                              {{12}{13}{34}}
                              {{12}{14}{23}}
                              {{12}{24}{34}}
                              {{12}{13}{14}{23}}
                              {{12}{13}{14}{24}}
                              {{12}{13}{14}{34}}
                              {{12}{13}{24}{34}}
                              {{12}{14}{23}{34}}
                              {{12}{13}{14}{23}{24}}
                              {{12}{13}{14}{23}{34}}
                              {{12}{13}{14}{23}{24}{34}}
(End)
		

Crossrefs

Cf. A192314, A191563 (orbits under dihedral group).
Cf. A000031, A000939 (cycle necklaces), A008965, A059966, A060223, A061417, A086675 (digraph version), A184271, A275527, A323858, A324461, A324463, A324464.

Programs

  • Maple
    with(numtheory);
    f:=proc(n) local t0, t1, d; t0:=0; t1:=divisors(n);
    for d in t1 do
    if d mod 2 = 0 then t0:=t0+phi(d)*2^(n^2/(2*d))
    else t0:=t0+phi(d)*2^(n*(n-1)/(2*d)); fi; od; t0/n; end;
    [seq(f(n), n=1..30)];
  • Mathematica
    Table[ 1/n* Plus @@ Map[Function[d, EulerPhi[d]*2^((n*(n - Mod[d, 2])/2)/d)], Divisors[n]], {n, 1, 20}]  (* Olivier Gérard, Aug 27 2011 *)
    rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],#=={}||#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]&]],{n,0,5}] (* Gus Wiseman, Mar 04 2019 *)
  • PARI
    a(n) = sumdiv(n, d, if (d%2, eulerphi(d)*2^(n*(n-1)/(2*d)), eulerphi(d)*2^(n^2/(2*d))))/n; \\ Michel Marcus, Mar 08 2019

Formula

a(n) = (1/n)*(Sum_{d|n, d odd} phi(d)*2^(n*(n-1)/(2*d)) + Sum_{d|n, d even} phi(d)*2^(n^2/(2*d))).

A323858 Number of toroidal necklaces of positive integers summing to n.

Original entry on oeis.org

1, 1, 3, 5, 10, 14, 31, 44, 90, 154, 296, 524, 1035, 1881, 3636, 6869, 13208, 25150, 48585, 93188, 180192, 347617, 673201, 1303259, 2529740, 4910708, 9549665, 18579828, 36192118, 70540863, 137620889, 268655549, 524873503, 1026068477, 2007178821, 3928564237
Offset: 0

Views

Author

Gus Wiseman, Feb 04 2019

Keywords

Comments

The 1-dimensional (necklace) case is A008965.
We define a toroidal necklace to be an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns. Alternatively, a toroidal necklace is a matrix that is minimal among all possible rotations of its sequence of rows and its sequence of columns.

Examples

			Inequivalent representatives of the a(6) = 31 toroidal necklaces:
  6  15  24  33  114  123  132  222  1113  1122  1212  11112  111111
.
  1  2  3  11  11  12  12  111
  5  4  3  13  22  12  21  111
.
  1  1  1  2  11
  1  2  3  2  11
  4  3  2  2  11
.
  1  1  1
  1  1  2
  1  2  1
  3  2  2
.
  1
  1
  1
  1
  2
.
  1
  1
  1
  1
  1
  1
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
    neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
    Table[Length[Join@@Table[Select[ptnmats[k],neckmatQ],{k,Times@@Prime/@#&/@IntegerPartitions[n]}]],{n,10}]
  • PARI
    U(n,m,k) = (1/(n*m)) * sumdiv(n, c, sumdiv(m, d, eulerphi(c) * eulerphi(d) * subst(k, x, x^lcm(c,d))^(n*m/lcm(c, d))));
    a(n)={if(n < 1, n==0, sum(i=1, n, sum(j=1, n\i, polcoef(U(i, j, x/(1-x) + O(x*x^n)), n))))} \\ Andrew Howroyd, Aug 18 2019

Extensions

Terms a(18) and beyond from Andrew Howroyd, Aug 18 2019

A184284 Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..2 arrays.

Original entry on oeis.org

3, 6, 6, 11, 27, 11, 24, 130, 130, 24, 51, 855, 2211, 855, 51, 130, 5934, 44368, 44368, 5934, 130, 315, 44487, 956635, 2691711, 956635, 44487, 315, 834, 341802, 21524790, 174342216, 174342216, 21524790, 341802, 834, 2195, 2691675, 498112275
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Examples

			Table starts
     3        6          11           24            51           130
     6       27         130          855          5934         44487
    11      130        2211        44368        956635      21524790
    24      855       44368      2691711     174342216   11767964475
    51     5934      956635    174342216   33891544611 6863038218842
   130    44487    21524790  11767964475 6863038218842
   315   341802   498112275 817028472960
   834  2691675 11767920118
  2195 21524542
  5934
		

Crossrefs

Main diagonal is A184278.
Cf. A184271, A184277, A184288, A184291, A184331, A184294 (0..1, 0..3 etc.).

Programs

  • Mathematica
    T[n_, k_] := (1/(n*k))*Sum[EulerPhi[c]*EulerPhi[d]*3^(n*k/LCM[c, d]), {c, Divisors[n]}, {d, Divisors[k]}]; Table[T[n-k+1, k], {n, 1, 9}, {k, 1, n}] // Flatten (*Jean-François Alcover, Oct 07 2017, after Andrew Howroyd *)
  • PARI
    T(n, k) = (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 3^(n*k/lcm(c,d)))); \\ Andrew Howroyd, Sep 27 2017

Formula

T(n,k) = (1/(n*k)) * Sum_{c|n} Sum_{d|k} phi(c) * phi(d) * 3^(n*k/lcm(c,d)). - Andrew Howroyd, Sep 27 2017

A323861 Table read by antidiagonals where A(n,k) is the number of n X k aperiodic binary toroidal necklaces.

Original entry on oeis.org

2, 1, 1, 2, 2, 2, 3, 9, 9, 3, 6, 27, 54, 27, 6, 9, 99, 335, 335, 99, 9, 18, 326, 2182, 4050, 2182, 326, 18, 30, 1161, 14523, 52377, 52377, 14523, 1161, 30, 56, 4050, 99858, 698535, 1342170, 698535, 99858, 4050, 56, 99, 14532, 698870, 9586395, 35790267, 35790267, 9586395, 698870, 14532, 99
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2019

Keywords

Comments

The 1-dimensional (Lyndon word) case is A001037.
We define a toroidal necklace to be an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns. An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.

Examples

			Table begins:
        1    2    3    4
    ------------------------
  1: |  2    1    2    3
  2: |  1    2    9   27
  3: |  2    9   54  335
  4: |  3   27  335 4050
Inequivalent representatives of the A(3,2) = 9 aperiodic toroidal necklaces:
  [0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 1 1] [0 1 1]
  [0 0 1] [0 1 1] [0 1 0] [0 1 1] [1 0 1] [1 1 0] [1 1 1] [1 0 1] [1 1 1]
		

Crossrefs

First and last columns are A001037. Main diagonal is A323872.

Programs

  • GAP
    # See link for code.
    for n in [1..8] do for k in [1..8] do Print(A323861(n,k), ", "); od; Print("\n"); od; # Andrew Howroyd, Aug 21 2019
  • Mathematica
    apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
    neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
    Table[Length[Select[Partition[#,n-k]&/@Tuples[{0,1},(n-k)*k],And[apermatQ[#],neckmatQ[#]]&]],{n,6},{k,n-1}]

Extensions

Terms a(37) and beyond from Andrew Howroyd, Aug 21 2019

A323865 Number of aperiodic binary toroidal necklaces of size n.

Original entry on oeis.org

1, 2, 2, 4, 8, 12, 36, 36, 114, 166, 396, 372, 1992, 1260, 4644, 8728, 20310, 15420, 87174, 55188, 314064, 399432, 762228, 729444, 5589620, 4026522, 10323180, 19883920, 57516048, 37025580, 286322136, 138547332, 805277760, 1041203944, 2021145660, 3926827224
Offset: 0

Views

Author

Gus Wiseman, Feb 04 2019

Keywords

Comments

We define a toroidal necklace to be an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns. An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.

Examples

			Inequivalent representatives of the a(6) = 36 aperiodic necklaces:
  000001  000011  000101  000111  001011  001101  001111  010111  011111
.
  000  000  001  001  001  001  001  011  011
  001  011  010  011  101  110  111  101  111
.
  00  00  00  00  00  01  01  01  01
  00  01  01  01  11  01  01  10  11
  01  01  10  11  01  10  11  11  11
.
  0  0  0  0  0  0  0  0  0
  0  0  0  0  0  0  0  1  1
  0  0  0  0  1  1  1  0  1
  0  0  1  1  0  1  1  1  1
  0  1  0  1  1  0  1  1  1
  1  1  1  1  1  1  1  1  1
		

Crossrefs

Programs

  • Mathematica
    apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
    neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
    zaz[n_]:=Join@@(Table[Partition[#,d],{d,Divisors[n]}]&/@Tuples[{0,1},n]);
    Table[If[n==0,1,Length[Union[First/@matcyc/@Select[zaz[n],And[apermatQ[#],neckmatQ[#]]&]]]],{n,0,10}]

Formula

a(n) = Sum_{d|n} A323861(d, n/d) for n > 0. - Andrew Howroyd, Aug 21 2019

Extensions

Terms a(19) and beyond from Andrew Howroyd, Aug 21 2019

A222188 Table read by antidiagonals: number of toroidal m X n binary arrays, allowing rotation and/or reflection of the rows and/or the columns.

Original entry on oeis.org

2, 3, 3, 4, 7, 4, 6, 13, 13, 6, 8, 34, 36, 34, 8, 13, 78, 158, 158, 78, 13, 18, 237, 708, 1459, 708, 237, 18, 30, 687, 4236, 14676, 14676, 4236, 687, 30, 46, 2299, 26412, 184854, 340880, 184854, 26412, 2299, 46
Offset: 1

Views

Author

N. J. A. Sloane, Feb 12 2013

Keywords

Examples

			Array begins:
  2,  3,   4,     6,      8,      13,        18,         30, ...
  3,  7,  13,    34,     78,     237,       687,       2299, ...
  4, 13,  36,   158,    708,    4236,     26412,     180070, ...
  6, 34, 158,  1459,  14676,  184854,   2445918,   33888844, ...
  8, 78, 708, 14676, 340880, 8999762, 245619576, 6873769668, ...
  ...
		

Crossrefs

Main diagonal is A209251.
Cf. A184271.

Programs

  • Mathematica
    b1[m_, n_] := Sum[EulerPhi[c]*EulerPhi[d]*2^(m*n/LCM[c, d]), {c, Divisors[ m]}, {d, Divisors[n]}]/(4*m*n); b2a[m_, n_] := If[OddQ[m], 2^((m+1)*n/2) /(4*n), (2^(m*n/2) + 2^((m+2)*n/2))/(8*n)]; b2b[m_, n_] := DivisorSum[n, If[# >= 2, EulerPhi[#]*2^((m*n)/#), 0]&]/(4*n); b2c[m_, n_] := If[OddQ[ m], Sum[If [OddQ[n/GCD[j, n]], 2^((m+1)*GCD[j, n]/2) - 2^(m*GCD[j, n]), 0], {j, 1, n-1}]/(4*n), Sum[If[OddQ[n/GCD[j, n]], 2^(m*GCD[j, n]/2) + 2^((m+2)*GCD[j, n]/2) - 2^(m*GCD[j, n]+1), 0], {j, 1, n-1}]/(8*n)]; b2[m_, n_] := b2a[m, n] + b2b[m, n] + b2c[m, n]; b3[m_, n_] := b2[n, m]; b4oo[m_, n_] := 2^((m*n-3)/2); b4eo[m_, n_] := 3*2^(m*n/2 - 3); b4ee[m_, n_] := 7*2^(m*n/2-4); a[m_, n_] := Module[{b}, If [OddQ[m], If [OddQ[n], b = b4oo[m, n], b = b4eo[m, n]], If[OddQ[n], b = b4eo[m, n], b = b4ee[m, n]]]; b += b1[m, n] + b2[m, n] + b3[m, n]; Return[b]]; Table[a[m - n+1, n], {m, 1, 10}, {n, 1, m}] // Flatten (* Jean-François Alcover, Dec 05 2015, adapted from Michel Marcus's PARI script *)
  • PARI
    odd(n) = n%2;
    b1(m,n) = sumdiv(m, c, sumdiv(n, d, eulerphi(c)*eulerphi(d)*2^(m*n/lcm(c,d))))/(4*m*n);
    b2a(m,n) = if (odd(m), 2^((m+1)*n/2)/(4*n), (2^(m*n/2)+2^((m+2)*n/2))/(8*n));
    b2b(m,n) = sumdiv(n, d, if (d>=2, eulerphi(d)*2^((m*n)/d), 0))/(4*n);
    b2c(m,n) = if (odd(m), sum(j=1, n-1, if (odd(n/gcd(j,n)), 2^((m+1)*gcd(j,n)/2)-2^(m*gcd(j,n))))/(4*n), sum(j=1, n-1, if (odd(n/gcd(j,n)), 2^(m*gcd(j,n)/2)+2^((m+2)*gcd(j,n)/2)-2^(m*gcd(j,n)+1)))/(8*n));
    b2(m,n) = b2a(m,n) + b2b(m,n) + b2c(m,n);
    b3(m,n) = b2(n,m);
    b4oo(m,n) = 2^((m*n - 3)/2);
    b4eo(m,n) = 3*2^(m*n/2 - 3);
    b4ee(m,n) = 7*2^(m*n/2 - 4);
    a(m,n) = {if (odd(m), if (odd(n), b = b4oo(m,n), b = b4eo(m,n)), if (odd(n), b = b4eo(m,n), b = b4ee(m,n))); b += b1(m,n) + b2(m,n) + b3(m,n); return (b);}
    \\ Michel Marcus, Feb 13 2013

A323859 Number of binary toroidal necklaces of size n.

Original entry on oeis.org

1, 2, 6, 8, 19, 16, 56, 40, 152, 184, 432, 376, 2132, 1264, 4728, 8768, 20688, 15424, 87656, 55192, 315128, 399520, 762984, 729448, 5595408, 4026576, 10325712, 19884504, 57527804, 37025584, 286340544, 138547336, 805335364, 1041204704, 2021176512, 3926827328
Offset: 0

Views

Author

Gus Wiseman, Feb 04 2019

Keywords

Comments

The 1-dimensional (necklace) case is A000031.
We define a toroidal necklace to be an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns. Alternatively, a toroidal necklace is a matrix that is minimal among all possible rotations of its sequence of rows and its sequence of columns.

Examples

			Inequivalent representatives of the a(4) = 19 binary toroidal necklaces:
  [0 0 0 0] [0 0 0 1] [0 0 1 1] [0 1 0 1] [0 1 1 1] [1 1 1 1]
.
  [0 0] [0 0] [0 0] [0 1] [0 1] [0 1] [1 1]
  [0 0] [0 1] [1 1] [0 1] [1 0] [1 1] [1 1]
.
  [0] [0] [0] [0] [0] [1]
  [0] [0] [0] [1] [1] [1]
  [0] [0] [1] [0] [1] [1]
  [0] [1] [1] [1] [1] [1]
		

Crossrefs

Programs

  • Mathematica
    matcyc[m_]:=Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
    Table[If[n==0,1,Length[Union[First/@matcyc/@Join@@(Table[Partition[#,d],{d,Divisors[n]}]&/@Tuples[{0,1},n])]]],{n,0,10}]
  • PARI
    U(n, m, k) = (1/(n*m)) * sumdiv(n, c, sumdiv(m, d, eulerphi(c) * eulerphi(d) * k^(n*m/lcm(c, d))))
    a(n) = if(n<1, n==0, sumdiv(n, d, U(n/d, d, 2))) \\ Andrew Howroyd, Jan 24 2023

Formula

a(n) = (1/n) * Sum_{d|n} Sum_{e|d, f|(n/d)} phi(e) * phi(f) * 2^(n/lcm(d,n/d)). [Ethier]

A255016 Number of toroidal n X n binary arrays, allowing rotation and/or reflection of rows and/or columns as well as matrix transposition.

Original entry on oeis.org

1, 2, 6, 26, 805, 172112, 239123150, 1436120190288, 36028817512382026, 3731252531904348833632, 1584563250300891724601560272, 2746338834266358751489231123956672, 19358285762613388352671214587818634041520
Offset: 0

Views

Author

Jiyeon Lee, Feb 12 2015

Keywords

Crossrefs

Cf. A184271 (number of m X n binary arrays allowing rotation of rows/columns), A179043 (main diagonal of A184271), A222188 (number of m X n binary arrays allowing rotation/reflection of rows/columns), A209251 (main diagonal of A222188), A255015 (number of n X n binary arrays allowing rotation of rows/columns as well as matrix transposition).
Cf. A054247.

Programs

  • Mathematica
    a[n_] := (8 n^2)^(-1) Sum[If[Mod[n, c] == 0, Sum[If[Mod[n, d] == 0, EulerPhi[c] EulerPhi[d] 2^(n^2/ LCM[c, d]), 0], {d, 1, n}], 0], {c, 1, n}] + (4 n)^(-1) Sum[If[Mod[n, d] == 0, EulerPhi[d] 2^(n^2/d), 0], {d, 1, n}] + If[Mod[n, 2] == 1, (4 n)^(-1) Sum[If[Mod[n, d] == 0 && Mod[d, 2] == 1, EulerPhi[d] (2^(n (n + 1)/(2 d)) - 2^(n^2/d)), 0], {d, 1, n}],(8 n)^(-1) Sum[If[Mod[n, d] == 0 && Mod[d, 2] == 1, EulerPhi[d] (2^(n^2/(2 d)) + 2^(n (n + 2)/(2 d)) - 2 2^(n^2/d)), 0], {d, 1, n}]] + (1/2) If[Mod[n, 2] == 1, 2^((n^2 - 3)/2), 7 2^(n^2/2 - 4)] + (4 n)^(-1) Sum[If[Mod[n, d] == 0, EulerPhi[d] 2^(n (n + d - 2 IntegerPart[d/2])/(2 d)), 0], {d, 1, n}] + If[Mod[n, 2] == 1, 2^((n^2 - 5)/4), 5 2^(n^2/4 - 3)];

Extensions

a(0)=1 from Alois P. Heinz, Feb 19 2015

A294684 Triangle read by rows: T(n,k) is the number of non-isomorphic colorings of a toroidal n X k grid using exactly two colors under translational symmetry, 1 <= k <= n.

Original entry on oeis.org

0, 1, 5, 2, 12, 62, 4, 38, 350, 4154, 6, 106, 2190, 52486, 1342206, 12, 360, 14622, 699598, 35792566, 1908897150, 18, 1180, 99878, 9587578, 981706830, 104715443850, 11488774559742, 34, 4148, 699250, 134223974, 27487816990, 5864063066498, 1286742755471398, 288230376353050814
Offset: 1

Views

Author

Marko Riedel, Nov 06 2017

Keywords

Comments

Colors are not being permuted, i.e., Power Group Enumeration does not apply here.

Examples

			Triangle begins:
   0;
   1,    5;
   2,   12,    62;
   4,   38,   350,    4154;
   6,  106,  2190,   52486,   1342206;
  12,  360, 14622,  699598,  35792566,   1908897150;
  18, 1180, 99878, 9587578, 981706830, 104715443850, 11488774559742;
  ...
For the 2 X 2 and two colors we find
  +---+  +---+  +---+  +---+  +---+
  |X| |  | |X|  |X| |  |X|X|  |X| |
  +-+-+  +-+-+  +-+-+  +-+-+  +-+-+
  | | |  |X|X|  | |X|  | | |  |X| |
  +-+-+  +-+-+  +-+-+  +-+-+  +-+-+
		

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Main diagonal is A376822.

Programs

  • Mathematica
    With[{Q = 2}, Table[(Q!/n/k) Sum[Sum[EulerPhi[d] EulerPhi[f] StirlingS2[GCD[d, f] (n/d) (k/f), Q], {f, Divisors@ k}], {d, Divisors@ n}], {n, 8}, {k, n}]] // Flatten (* Michael De Vlieger, Nov 08 2017 *)
  • PARI
    T(n,m) = {2*sumdiv(n, d, sumdiv(m, e, eulerphi(d) * eulerphi(e) * stirling(n*m/lcm(d,e), 2, 2) ))/(n*m)} \\ Andrew Howroyd, Oct 05 2024

Formula

T(n,k) = (Q!/(n*k))*(Sum_{d|n} Sum_{f|k} phi(d) phi(f) S(gcd(d,f)*(n/d)*(k/f), Q)) with Q=2 and S(n,k) Stirling numbers of the second kind.
T(n,k) = A184271(n,k) - 2. - Andrew Howroyd, Oct 05 2024
Showing 1-10 of 33 results. Next