A179043
Number of n X n checkered tori.
Original entry on oeis.org
1, 2, 7, 64, 4156, 1342208, 1908897152, 11488774559744, 288230376353050816, 29850020237398264483840, 12676506002282327791964489728, 21970710674130840874443091905462272, 154866286100907105149651981766316633972736
Offset: 0
Rouben Rostamian (rostamian(AT)umbc.edu), Jun 25 2010
From _Gus Wiseman_, Feb 04 2019: (Start)
Inequivalent representatives of the a(2) = 7 checkered tori:
[0 0] [0 0] [0 0] [0 1] [0 1] [0 1] [1 1]
[0 0] [0 1] [1 1] [0 1] [1 0] [1 1] [1 1]
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..57
- S. N. Ethier, Counting toroidal binary arrays, arXiv:1301.2352v1 [math.CO], Jan 10, 2013 and J. Int. Seq. 16 (2013) #13.4.7 .
- S. N. Ethier and Jiyeon Lee, Counting toroidal binary arrays, II, arXiv:1502.03792v1 [math.CO], Feb 12, 2015 and J. Int. Seq. 18 (2015) # 15.8.3.
- Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016.
- Peter Kagey and William Keehn, Counting Tilings of the n X m Grid, Cylinder, and Torus, J. Int. Seq. (2024) Vol. 27, Art. No. 24.6.1. See p. 2.
- Wikipedia, Pólya enumeration theorem
Cf.
A184271 (n X k toroidal binary arrays).
-
a[n_] := Sum[If[Mod[n, c] == 0, Sum[If[Mod[n, d] == 0, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d]), 0], {d, 1, n}], 0], {c, 1, n}]/n ^2
A192332
For n >= 3, draw a regular n-sided polygon and its n(n-3)/2 diagonals, so there are n(n-1)/2 lines; a(n) is the number of ways to choose a subset of these lines (subsets differing by a rotation are regarded as identical). a(1)=1, a(2)=2 by convention.
Original entry on oeis.org
1, 2, 4, 22, 208, 5560, 299600, 33562696, 7635498336, 3518440564544, 3275345183542208, 6148914696963883712, 23248573454127484129024, 176848577040808821410837120, 2704321280486889389864215362560, 83076749736557243209409446411255936, 5124252113632955685095523500148980125696, 634332307869315502692705867068871886072665600
Offset: 1
From _Gus Wiseman_, Mar 04 2019: (Start)
Inequivalent representatives of the a(1) = 1 through a(4) = 22 graphical necklace edge-sets:
{} {} {} {}
{{12}} {{12}} {{12}}
{{12}{13}} {{13}}
{{12}{13}{23}} {{12}{13}}
{{12}{14}}
{{12}{24}}
{{12}{34}}
{{13}{24}}
{{12}{13}{14}}
{{12}{13}{23}}
{{12}{13}{24}}
{{12}{13}{34}}
{{12}{14}{23}}
{{12}{24}{34}}
{{12}{13}{14}{23}}
{{12}{13}{14}{24}}
{{12}{13}{14}{34}}
{{12}{13}{24}{34}}
{{12}{14}{23}{34}}
{{12}{13}{14}{23}{24}}
{{12}{13}{14}{23}{34}}
{{12}{13}{14}{23}{24}{34}}
(End)
Cf.
A000031,
A000939 (cycle necklaces),
A008965,
A059966,
A060223,
A061417,
A086675 (digraph version),
A184271,
A275527,
A323858,
A324461,
A324463,
A324464.
-
with(numtheory);
f:=proc(n) local t0, t1, d; t0:=0; t1:=divisors(n);
for d in t1 do
if d mod 2 = 0 then t0:=t0+phi(d)*2^(n^2/(2*d))
else t0:=t0+phi(d)*2^(n*(n-1)/(2*d)); fi; od; t0/n; end;
[seq(f(n), n=1..30)];
-
Table[ 1/n* Plus @@ Map[Function[d, EulerPhi[d]*2^((n*(n - Mod[d, 2])/2)/d)], Divisors[n]], {n, 1, 20}] (* Olivier Gérard, Aug 27 2011 *)
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],#=={}||#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]&]],{n,0,5}] (* Gus Wiseman, Mar 04 2019 *)
-
a(n) = sumdiv(n, d, if (d%2, eulerphi(d)*2^(n*(n-1)/(2*d)), eulerphi(d)*2^(n^2/(2*d))))/n; \\ Michel Marcus, Mar 08 2019
A323858
Number of toroidal necklaces of positive integers summing to n.
Original entry on oeis.org
1, 1, 3, 5, 10, 14, 31, 44, 90, 154, 296, 524, 1035, 1881, 3636, 6869, 13208, 25150, 48585, 93188, 180192, 347617, 673201, 1303259, 2529740, 4910708, 9549665, 18579828, 36192118, 70540863, 137620889, 268655549, 524873503, 1026068477, 2007178821, 3928564237
Offset: 0
Inequivalent representatives of the a(6) = 31 toroidal necklaces:
6 15 24 33 114 123 132 222 1113 1122 1212 11112 111111
.
1 2 3 11 11 12 12 111
5 4 3 13 22 12 21 111
.
1 1 1 2 11
1 2 3 2 11
4 3 2 2 11
.
1 1 1
1 1 2
1 2 1
3 2 2
.
1
1
1
1
2
.
1
1
1
1
1
1
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
Table[Length[Join@@Table[Select[ptnmats[k],neckmatQ],{k,Times@@Prime/@#&/@IntegerPartitions[n]}]],{n,10}]
-
U(n,m,k) = (1/(n*m)) * sumdiv(n, c, sumdiv(m, d, eulerphi(c) * eulerphi(d) * subst(k, x, x^lcm(c,d))^(n*m/lcm(c, d))));
a(n)={if(n < 1, n==0, sum(i=1, n, sum(j=1, n\i, polcoef(U(i, j, x/(1-x) + O(x*x^n)), n))))} \\ Andrew Howroyd, Aug 18 2019
A184284
Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..2 arrays.
Original entry on oeis.org
3, 6, 6, 11, 27, 11, 24, 130, 130, 24, 51, 855, 2211, 855, 51, 130, 5934, 44368, 44368, 5934, 130, 315, 44487, 956635, 2691711, 956635, 44487, 315, 834, 341802, 21524790, 174342216, 174342216, 21524790, 341802, 834, 2195, 2691675, 498112275
Offset: 1
Table starts
3 6 11 24 51 130
6 27 130 855 5934 44487
11 130 2211 44368 956635 21524790
24 855 44368 2691711 174342216 11767964475
51 5934 956635 174342216 33891544611 6863038218842
130 44487 21524790 11767964475 6863038218842
315 341802 498112275 817028472960
834 2691675 11767920118
2195 21524542
5934
- Alois P. Heinz, antidiagonals n = 1..50, flattened (first 58 terms from R. H. Hardin)
- S. N. Ethier, Counting toroidal binary arrays, arXiv:1301.2352v1 [math.CO], Jan 10, 2013.
- S. N. Ethier and Jiyeon Lee, Counting toroidal binary arrays, II, arXiv:1502.03792v1 [math.CO], Feb 12, 2015.
- Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016.
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023. See p. 3.
-
T[n_, k_] := (1/(n*k))*Sum[EulerPhi[c]*EulerPhi[d]*3^(n*k/LCM[c, d]), {c, Divisors[n]}, {d, Divisors[k]}]; Table[T[n-k+1, k], {n, 1, 9}, {k, 1, n}] // Flatten (*Jean-François Alcover, Oct 07 2017, after Andrew Howroyd *)
-
T(n, k) = (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 3^(n*k/lcm(c,d)))); \\ Andrew Howroyd, Sep 27 2017
A323861
Table read by antidiagonals where A(n,k) is the number of n X k aperiodic binary toroidal necklaces.
Original entry on oeis.org
2, 1, 1, 2, 2, 2, 3, 9, 9, 3, 6, 27, 54, 27, 6, 9, 99, 335, 335, 99, 9, 18, 326, 2182, 4050, 2182, 326, 18, 30, 1161, 14523, 52377, 52377, 14523, 1161, 30, 56, 4050, 99858, 698535, 1342170, 698535, 99858, 4050, 56, 99, 14532, 698870, 9586395, 35790267, 35790267, 9586395, 698870, 14532, 99
Offset: 1
Table begins:
1 2 3 4
------------------------
1: | 2 1 2 3
2: | 1 2 9 27
3: | 2 9 54 335
4: | 3 27 335 4050
Inequivalent representatives of the A(3,2) = 9 aperiodic toroidal necklaces:
[0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 1 1] [0 1 1]
[0 0 1] [0 1 1] [0 1 0] [0 1 1] [1 0 1] [1 1 0] [1 1 1] [1 0 1] [1 1 1]
-
# See link for code.
for n in [1..8] do for k in [1..8] do Print(A323861(n,k), ", "); od; Print("\n"); od; # Andrew Howroyd, Aug 21 2019
-
apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
Table[Length[Select[Partition[#,n-k]&/@Tuples[{0,1},(n-k)*k],And[apermatQ[#],neckmatQ[#]]&]],{n,6},{k,n-1}]
A323865
Number of aperiodic binary toroidal necklaces of size n.
Original entry on oeis.org
1, 2, 2, 4, 8, 12, 36, 36, 114, 166, 396, 372, 1992, 1260, 4644, 8728, 20310, 15420, 87174, 55188, 314064, 399432, 762228, 729444, 5589620, 4026522, 10323180, 19883920, 57516048, 37025580, 286322136, 138547332, 805277760, 1041203944, 2021145660, 3926827224
Offset: 0
Inequivalent representatives of the a(6) = 36 aperiodic necklaces:
000001 000011 000101 000111 001011 001101 001111 010111 011111
.
000 000 001 001 001 001 001 011 011
001 011 010 011 101 110 111 101 111
.
00 00 00 00 00 01 01 01 01
00 01 01 01 11 01 01 10 11
01 01 10 11 01 10 11 11 11
.
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 0 1
0 0 1 1 0 1 1 1 1
0 1 0 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1
-
apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
zaz[n_]:=Join@@(Table[Partition[#,d],{d,Divisors[n]}]&/@Tuples[{0,1},n]);
Table[If[n==0,1,Length[Union[First/@matcyc/@Select[zaz[n],And[apermatQ[#],neckmatQ[#]]&]]]],{n,0,10}]
A222188
Table read by antidiagonals: number of toroidal m X n binary arrays, allowing rotation and/or reflection of the rows and/or the columns.
Original entry on oeis.org
2, 3, 3, 4, 7, 4, 6, 13, 13, 6, 8, 34, 36, 34, 8, 13, 78, 158, 158, 78, 13, 18, 237, 708, 1459, 708, 237, 18, 30, 687, 4236, 14676, 14676, 4236, 687, 30, 46, 2299, 26412, 184854, 340880, 184854, 26412, 2299, 46
Offset: 1
Array begins:
2, 3, 4, 6, 8, 13, 18, 30, ...
3, 7, 13, 34, 78, 237, 687, 2299, ...
4, 13, 36, 158, 708, 4236, 26412, 180070, ...
6, 34, 158, 1459, 14676, 184854, 2445918, 33888844, ...
8, 78, 708, 14676, 340880, 8999762, 245619576, 6873769668, ...
...
- G. C. Greubel, Table of n, a(n) for the first 100 antidiagonals, flattened
- S. N. Ethier, Counting toroidal binary arrays, arXiv:1301.2352 [math.CO], 2013 and J. Int. Seq. 16 (2013) #13.4.7.
- S. N. Ethier and Jiyeon Lee, Counting toroidal binary arrays, II, arXiv:1502.03792v1 [math.CO], Feb 12, 2015 and J. Int. Seq. 18 (2015) # 15.8.3.
- S. N. Ethier and Jiyeon Lee, Parrondo games with two-dimensional spatial dependence, arXiv:1510.06947 [math.PR], 2015.
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023. See p. 3.
-
b1[m_, n_] := Sum[EulerPhi[c]*EulerPhi[d]*2^(m*n/LCM[c, d]), {c, Divisors[ m]}, {d, Divisors[n]}]/(4*m*n); b2a[m_, n_] := If[OddQ[m], 2^((m+1)*n/2) /(4*n), (2^(m*n/2) + 2^((m+2)*n/2))/(8*n)]; b2b[m_, n_] := DivisorSum[n, If[# >= 2, EulerPhi[#]*2^((m*n)/#), 0]&]/(4*n); b2c[m_, n_] := If[OddQ[ m], Sum[If [OddQ[n/GCD[j, n]], 2^((m+1)*GCD[j, n]/2) - 2^(m*GCD[j, n]), 0], {j, 1, n-1}]/(4*n), Sum[If[OddQ[n/GCD[j, n]], 2^(m*GCD[j, n]/2) + 2^((m+2)*GCD[j, n]/2) - 2^(m*GCD[j, n]+1), 0], {j, 1, n-1}]/(8*n)]; b2[m_, n_] := b2a[m, n] + b2b[m, n] + b2c[m, n]; b3[m_, n_] := b2[n, m]; b4oo[m_, n_] := 2^((m*n-3)/2); b4eo[m_, n_] := 3*2^(m*n/2 - 3); b4ee[m_, n_] := 7*2^(m*n/2-4); a[m_, n_] := Module[{b}, If [OddQ[m], If [OddQ[n], b = b4oo[m, n], b = b4eo[m, n]], If[OddQ[n], b = b4eo[m, n], b = b4ee[m, n]]]; b += b1[m, n] + b2[m, n] + b3[m, n]; Return[b]]; Table[a[m - n+1, n], {m, 1, 10}, {n, 1, m}] // Flatten (* Jean-François Alcover, Dec 05 2015, adapted from Michel Marcus's PARI script *)
-
odd(n) = n%2;
b1(m,n) = sumdiv(m, c, sumdiv(n, d, eulerphi(c)*eulerphi(d)*2^(m*n/lcm(c,d))))/(4*m*n);
b2a(m,n) = if (odd(m), 2^((m+1)*n/2)/(4*n), (2^(m*n/2)+2^((m+2)*n/2))/(8*n));
b2b(m,n) = sumdiv(n, d, if (d>=2, eulerphi(d)*2^((m*n)/d), 0))/(4*n);
b2c(m,n) = if (odd(m), sum(j=1, n-1, if (odd(n/gcd(j,n)), 2^((m+1)*gcd(j,n)/2)-2^(m*gcd(j,n))))/(4*n), sum(j=1, n-1, if (odd(n/gcd(j,n)), 2^(m*gcd(j,n)/2)+2^((m+2)*gcd(j,n)/2)-2^(m*gcd(j,n)+1)))/(8*n));
b2(m,n) = b2a(m,n) + b2b(m,n) + b2c(m,n);
b3(m,n) = b2(n,m);
b4oo(m,n) = 2^((m*n - 3)/2);
b4eo(m,n) = 3*2^(m*n/2 - 3);
b4ee(m,n) = 7*2^(m*n/2 - 4);
a(m,n) = {if (odd(m), if (odd(n), b = b4oo(m,n), b = b4eo(m,n)), if (odd(n), b = b4eo(m,n), b = b4ee(m,n))); b += b1(m,n) + b2(m,n) + b3(m,n); return (b);}
\\ Michel Marcus, Feb 13 2013
A323859
Number of binary toroidal necklaces of size n.
Original entry on oeis.org
1, 2, 6, 8, 19, 16, 56, 40, 152, 184, 432, 376, 2132, 1264, 4728, 8768, 20688, 15424, 87656, 55192, 315128, 399520, 762984, 729448, 5595408, 4026576, 10325712, 19884504, 57527804, 37025584, 286340544, 138547336, 805335364, 1041204704, 2021176512, 3926827328
Offset: 0
Inequivalent representatives of the a(4) = 19 binary toroidal necklaces:
[0 0 0 0] [0 0 0 1] [0 0 1 1] [0 1 0 1] [0 1 1 1] [1 1 1 1]
.
[0 0] [0 0] [0 0] [0 1] [0 1] [0 1] [1 1]
[0 0] [0 1] [1 1] [0 1] [1 0] [1 1] [1 1]
.
[0] [0] [0] [0] [0] [1]
[0] [0] [0] [1] [1] [1]
[0] [0] [1] [0] [1] [1]
[0] [1] [1] [1] [1] [1]
-
matcyc[m_]:=Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
Table[If[n==0,1,Length[Union[First/@matcyc/@Join@@(Table[Partition[#,d],{d,Divisors[n]}]&/@Tuples[{0,1},n])]]],{n,0,10}]
-
U(n, m, k) = (1/(n*m)) * sumdiv(n, c, sumdiv(m, d, eulerphi(c) * eulerphi(d) * k^(n*m/lcm(c, d))))
a(n) = if(n<1, n==0, sumdiv(n, d, U(n/d, d, 2))) \\ Andrew Howroyd, Jan 24 2023
A255016
Number of toroidal n X n binary arrays, allowing rotation and/or reflection of rows and/or columns as well as matrix transposition.
Original entry on oeis.org
1, 2, 6, 26, 805, 172112, 239123150, 1436120190288, 36028817512382026, 3731252531904348833632, 1584563250300891724601560272, 2746338834266358751489231123956672, 19358285762613388352671214587818634041520
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..57
- S. N. Ethier and Jiyeon Lee, Counting toroidal binary arrays, II, arXiv:1502.03792 [math.CO], Feb 12, 2015 and J. Int. Seq. 18 (2015) # 15.8.3.
- S. N. Ethier and Jiyeon Lee, Parrondo games with two-dimensional spatial dependence, arXiv preprint arXiv:1510.06947 [math.PR], 2015.
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023. See p. 3.
- Wikipedia, Pólya enumeration theorem.
Cf.
A184271 (number of m X n binary arrays allowing rotation of rows/columns),
A179043 (main diagonal of
A184271),
A222188 (number of m X n binary arrays allowing rotation/reflection of rows/columns),
A209251 (main diagonal of
A222188),
A255015 (number of n X n binary arrays allowing rotation of rows/columns as well as matrix transposition).
-
a[n_] := (8 n^2)^(-1) Sum[If[Mod[n, c] == 0, Sum[If[Mod[n, d] == 0, EulerPhi[c] EulerPhi[d] 2^(n^2/ LCM[c, d]), 0], {d, 1, n}], 0], {c, 1, n}] + (4 n)^(-1) Sum[If[Mod[n, d] == 0, EulerPhi[d] 2^(n^2/d), 0], {d, 1, n}] + If[Mod[n, 2] == 1, (4 n)^(-1) Sum[If[Mod[n, d] == 0 && Mod[d, 2] == 1, EulerPhi[d] (2^(n (n + 1)/(2 d)) - 2^(n^2/d)), 0], {d, 1, n}],(8 n)^(-1) Sum[If[Mod[n, d] == 0 && Mod[d, 2] == 1, EulerPhi[d] (2^(n^2/(2 d)) + 2^(n (n + 2)/(2 d)) - 2 2^(n^2/d)), 0], {d, 1, n}]] + (1/2) If[Mod[n, 2] == 1, 2^((n^2 - 3)/2), 7 2^(n^2/2 - 4)] + (4 n)^(-1) Sum[If[Mod[n, d] == 0, EulerPhi[d] 2^(n (n + d - 2 IntegerPart[d/2])/(2 d)), 0], {d, 1, n}] + If[Mod[n, 2] == 1, 2^((n^2 - 5)/4), 5 2^(n^2/4 - 3)];
A294684
Triangle read by rows: T(n,k) is the number of non-isomorphic colorings of a toroidal n X k grid using exactly two colors under translational symmetry, 1 <= k <= n.
Original entry on oeis.org
0, 1, 5, 2, 12, 62, 4, 38, 350, 4154, 6, 106, 2190, 52486, 1342206, 12, 360, 14622, 699598, 35792566, 1908897150, 18, 1180, 99878, 9587578, 981706830, 104715443850, 11488774559742, 34, 4148, 699250, 134223974, 27487816990, 5864063066498, 1286742755471398, 288230376353050814
Offset: 1
Triangle begins:
0;
1, 5;
2, 12, 62;
4, 38, 350, 4154;
6, 106, 2190, 52486, 1342206;
12, 360, 14622, 699598, 35792566, 1908897150;
18, 1180, 99878, 9587578, 981706830, 104715443850, 11488774559742;
...
For the 2 X 2 and two colors we find
+---+ +---+ +---+ +---+ +---+
|X| | | |X| |X| | |X|X| |X| |
+-+-+ +-+-+ +-+-+ +-+-+ +-+-+
| | | |X|X| | |X| | | | |X| |
+-+-+ +-+-+ +-+-+ +-+-+ +-+-+
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.
-
With[{Q = 2}, Table[(Q!/n/k) Sum[Sum[EulerPhi[d] EulerPhi[f] StirlingS2[GCD[d, f] (n/d) (k/f), Q], {f, Divisors@ k}], {d, Divisors@ n}], {n, 8}, {k, n}]] // Flatten (* Michael De Vlieger, Nov 08 2017 *)
-
T(n,m) = {2*sumdiv(n, d, sumdiv(m, e, eulerphi(d) * eulerphi(e) * stirling(n*m/lcm(d,e), 2, 2) ))/(n*m)} \\ Andrew Howroyd, Oct 05 2024
Showing 1-10 of 33 results.
Comments