A294685
Triangle read by rows: T(n,k) is the number of non-isomorphic colorings of a toroidal n X k grid using exactly three colors under translational symmetry, 1 <= k <= n.
Original entry on oeis.org
0, 0, 9, 2, 91, 2022, 9, 738, 43315, 2679246, 30, 5613, 950062, 174184755, 33887517990, 91, 43404, 21480921, 11765865678, 6862930841141, 4169289730628814, 258, 338259, 497812638, 816999710223, 1429469771994078, 2605213713043722909, 4883659745750360600262, 729, 2679228, 11765822365, 57906482267826, 303941554100145501
Offset: 1
Triangle begins:
0;
0, 9;
2, 91, 2022;
9, 738, 43315, 2679246;
30, 5613, 950062, 174184755, 33887517990;
91, 43404, 21480921, 11765865678, 6862930841141, 4169289730628814;
...
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.
-
T(n,m)=6*sumdiv(n, d, sumdiv(m, e, eulerphi(d) * eulerphi(e) * stirling(n*m/lcm(d,e), 3, 2) ))/(n*m) \\ Andrew Howroyd, Oct 05 2024
A294686
Triangle read by rows: T(n,k) is the number of non-isomorphic colorings of a toroidal n X k grid using exactly four colors under translational symmetry, 1 <= k <= n.
Original entry on oeis.org
0, 0, 6, 0, 260, 20720, 6, 5112, 1223136, 257706024, 48, 81876, 67769552, 54278580036, 44900438149488, 260, 1223396, 3731753700, 11681058472672, 38403264917970196, 131160169581733489616, 1200, 17815020, 207438938000, 2570217454576416, 33725471278376393424, 460532748521625850986660, 6467585568566200114362823920, 5106, 257706012, 11681057249536, 576229125971686224
Offset: 1
Triangle begins:
0;
0, 6;
0, 260, 20720;
6, 5112, 1223136, 257706024;
48, 81876, 67769552, 54278580036, 44900438149488;
260, 1223396, 3731753700, 11681058472672, 38403264917970196, 131160169581733489616;
...
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.
-
T(n,m)=my(k=4); k!*sumdiv(n, d, sumdiv(m, e, eulerphi(d) * eulerphi(e) * stirling(n*m/lcm(d,e), k, 2) ))/(n*m) \\ Andrew Howroyd, Oct 05 2024
A184277
Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..3 arrays.
Original entry on oeis.org
4, 10, 10, 24, 76, 24, 70, 700, 700, 70, 208, 8296, 29184, 8296, 208, 700, 104968, 1398500, 1398500, 104968, 700, 2344, 1399176, 71582944, 268447936, 71582944, 1399176, 2344, 8230, 19175140, 3817765120, 54975633976, 54975633976
Offset: 1
Table starts
4 10 24 70 208 700
10 76 700 8296 104968 1399176
24 700 29184 1398500 71582944 3817765120
70 8296 1398500 268447936 54975633976 11728126132976
208 104968 71582944 54975633976 45035996274688
700 1399176 3817765120 11728126132976
2344 19175140 209430787824
8230 268447816
29144
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 48 terms from R. H. Hardin)
- S. N. Ethier, Counting toroidal binary arrays, arXiv:1301.2352v1 [math.CO], Jan 10, 2013.
- S. N. Ethier and Jiyeon Lee, Counting toroidal binary arrays, II, arXiv:1502.03792v1 [math.CO], Feb 12, 2015.
- Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016.
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023. See pp. 3, 42.
-
T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*4^(n*k/LCM[c, d]), {d, Divisors[k]}], {c, Divisors[n]}];
Table[T[n-k+1, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)
-
T(n, k) = (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 4^(n*k/lcm(c,d)))); \\ Andrew Howroyd, Sep 27 2017
A184288
Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..4 arrays.
Original entry on oeis.org
5, 15, 15, 45, 175, 45, 165, 2635, 2635, 165, 629, 49075, 217125, 49075, 629, 2635, 976887, 20346485, 20346485, 976887, 2635, 11165, 20349075, 2034505661, 9536816875, 2034505661, 20349075, 11165, 48915, 435970995, 211927741375
Offset: 1
Table starts
5 15 45 165 629 2635
15 175 2635 49075 976887 20349075
45 2635 217125 20346485 2034505661 211927741375
165 49075 20346485 9536816875 4768372070757
629 976887 2034505661 4768372070757
2635 20349075 211927741375
11165 435970995
48915
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 39 terms from R. H. Hardin)
- S. N. Ethier, Counting toroidal binary arrays, arXiv:1301.2352v1 [math.CO], Jan 10, 2013.
- S. N. Ethier and Jiyeon Lee, Counting toroidal binary arrays, II, arXiv:1502.03792v1 [math.CO], Feb 12, 2015.
- Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016.
-
T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c] * EulerPhi[d] * 5^(n*k/LCM[c, d]), {d, Divisors[k]}], {c, Divisors[n]}];
Table[T[n - k + 1, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)
-
T(n, k) = (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 5^(n*k/lcm(c,d)))); \\ Andrew Howroyd, Sep 27 2017
A184294
Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..7 arrays.
Original entry on oeis.org
8, 36, 36, 176, 1072, 176, 1044, 43800, 43800, 1044, 6560, 2098720, 14913536, 2098720, 6560, 43800, 107377488, 5726645688, 5726645688, 107377488, 43800, 299600, 5726689312, 2345624810432, 17592189193216, 2345624810432, 5726689312, 299600
Offset: 1
Table starts
8 36 176 1044 6560 43800
36 1072 43800 2098720 107377488 5726689312
176 43800 14913536 5726645688 2345624810432
1044 2098720 5726645688 17592189193216
6560 107377488 2345624810432
43800 5726689312
299600
- Alois P. Heinz, Antidiagonals n = 1..65, flattened (first 8 antidiagonals from R. H. Hardin)
- S. N. Ethier, Counting toroidal binary arrays, arXiv:1301.2352v1 [math.CO], Jan 10, 2013.
- S. N. Ethier and Jiyeon Lee, Counting toroidal binary arrays, II, arXiv:1502.03792v1 [math.CO], Feb 12, 2015.
- Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016.
-
with(numtheory):
T:= (n, k)-> add(add(phi(c)*phi(d)*8^(n*k/ilcm(c, d)),
c=divisors(n)), d=divisors(k))/(n*k):
seq(seq(T(n, 1+d-n), n=1..d), d=1..8); # Alois P. Heinz, Aug 20 2017
-
T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*8^(n*(k/LCM[c, d])), {d, Divisors[k]}], {c, Divisors[n]}]; Table[T[n - k + 1, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 30 2017, after Alois P. Heinz *)
-
T(n, k) = (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 8^(n*k/lcm(c,d)))); \\ Andrew Howroyd, Sep 27 2017
A184278
Number of distinct n X n toroidal 0..2 arrays.
Original entry on oeis.org
3, 27, 2211, 2691711, 33891544611, 4169295457320267, 4883659780216684279491, 53651309692070594433108320631, 5474401089420219382077156686715199875, 5153775207320113310364632834595843483435609099, 44553974378043749018508590814287728257805180848046070883
Offset: 1
A184291
Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..5 arrays.
Original entry on oeis.org
6, 21, 21, 76, 351, 76, 336, 7826, 7826, 336, 1560, 210456, 1119936, 210456, 1560, 7826, 6047412, 181402676, 181402676, 6047412, 7826, 39996, 181410426, 31345666736, 176319685116, 31345666736, 181410426, 39996, 210126, 5597460306
Offset: 1
Table starts
6 21 76 336 1560 7826 39996
21 351 7826 210456 6047412 181410426 5597460306
76 7826 1119936 181402676 31345666736 5642220395616
336 210456 181402676 176319685116
1560 6047412 31345666736
7826 181410426
39996
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 31 terms from R. H. Hardin)
- S. N. Ethier, Counting toroidal binary arrays, arXiv:1301.2352v1 [math.CO], Jan 10, 2013.
- S. N. Ethier and Jiyeon Lee, Counting toroidal binary arrays, II, arXiv:1502.03792v1 [math.CO], Feb 12, 2015.
- Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016.
-
T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*6^(n*(k/LCM[c, d])), {d, Divisors[k]}], {c, Divisors[n]}]; Table[T[n-k+1, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 30 2017, after Andrew Howroyd *)
-
T(n, k) = (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 6^(n*k/lcm(c,d)))); \\ Andrew Howroyd, Sep 27 2017
A184331
Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..6 arrays.
Original entry on oeis.org
7, 28, 28, 119, 637, 119, 616, 19684, 19684, 616, 3367, 721525, 4484039, 721525, 3367, 19684, 28249228, 1153450872, 1153450872, 28249228, 19684, 117655, 1153470437, 316504102999, 2077059243301, 316504102999, 1153470437, 117655, 720916
Offset: 1
Table starts
7 28 119 616 3367 19684
28 637 19684 721525 28249228 1153470437
119 19684 4484039 1153450872 316504102999 90467424400444
616 721525 1153450872 2077059243301
3367 28249228 316504102999
19684 1153470437
117655
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 31 terms from R. H. Hardin)
- S. N. Ethier, Counting toroidal binary arrays, arXiv:1301.2352v1 [math.CO], Jan 10, 2013.
- S. N. Ethier and Jiyeon Lee, Counting toroidal binary arrays, II, arXiv:1502.03792v1 [math.CO], Feb 12, 2015.
- Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016.
-
T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*7^(n*(k/LCM[c, d])), {d, Divisors[k]}], {c, Divisors[n]}]; Table[T[n - k + 1, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 30 2017, after Andrew Howroyd *)
-
T(n, k) = (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 7^(n*k/lcm(c,d)))); \\ Andrew Howroyd, Sep 27 2017
A184279
Number of distinct n X 2 toroidal 0..2 arrays.
Original entry on oeis.org
6, 27, 130, 855, 5934, 44487, 341802, 2691675, 21524542, 174348099, 1426419858, 11767964475, 97764131646, 817028814447, 6863038218842, 57906884938095, 490505347906086, 4169295457231347, 35548729443032994, 303941636737938639
Offset: 1
A184280
Number of distinct n X 3 toroidal 0..2 arrays.
Original entry on oeis.org
11, 130, 2211, 44368, 956635, 21524790, 498112275, 11767920118, 282429542331, 6863038218842, 168456380815459, 4169295435797688, 103911670590311931, 2605214027190054462, 65651393478909968211, 1661800897440729720268, 42229293393638392639051
Offset: 1
Showing 1-10 of 13 results.
Comments