cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A184284 Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..2 arrays.

Original entry on oeis.org

3, 6, 6, 11, 27, 11, 24, 130, 130, 24, 51, 855, 2211, 855, 51, 130, 5934, 44368, 44368, 5934, 130, 315, 44487, 956635, 2691711, 956635, 44487, 315, 834, 341802, 21524790, 174342216, 174342216, 21524790, 341802, 834, 2195, 2691675, 498112275
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Examples

			Table starts
     3        6          11           24            51           130
     6       27         130          855          5934         44487
    11      130        2211        44368        956635      21524790
    24      855       44368      2691711     174342216   11767964475
    51     5934      956635    174342216   33891544611 6863038218842
   130    44487    21524790  11767964475 6863038218842
   315   341802   498112275 817028472960
   834  2691675 11767920118
  2195 21524542
  5934
		

Crossrefs

Main diagonal is A184278.
Cf. A184271, A184277, A184288, A184291, A184331, A184294 (0..1, 0..3 etc.).

Programs

  • Mathematica
    T[n_, k_] := (1/(n*k))*Sum[EulerPhi[c]*EulerPhi[d]*3^(n*k/LCM[c, d]), {c, Divisors[n]}, {d, Divisors[k]}]; Table[T[n-k+1, k], {n, 1, 9}, {k, 1, n}] // Flatten (*Jean-François Alcover, Oct 07 2017, after Andrew Howroyd *)
  • PARI
    T(n, k) = (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 3^(n*k/lcm(c,d)))); \\ Andrew Howroyd, Sep 27 2017

Formula

T(n,k) = (1/(n*k)) * Sum_{c|n} Sum_{d|k} phi(c) * phi(d) * 3^(n*k/lcm(c,d)). - Andrew Howroyd, Sep 27 2017

A294686 Triangle read by rows: T(n,k) is the number of non-isomorphic colorings of a toroidal n X k grid using exactly four colors under translational symmetry, 1 <= k <= n.

Original entry on oeis.org

0, 0, 6, 0, 260, 20720, 6, 5112, 1223136, 257706024, 48, 81876, 67769552, 54278580036, 44900438149488, 260, 1223396, 3731753700, 11681058472672, 38403264917970196, 131160169581733489616, 1200, 17815020, 207438938000, 2570217454576416, 33725471278376393424, 460532748521625850986660, 6467585568566200114362823920, 5106, 257706012, 11681057249536, 576229125971686224
Offset: 1

Views

Author

Marko Riedel, Nov 06 2017

Keywords

Comments

Colors are not being permuted, i.e., Power Group Enumeration does not apply here.

Examples

			Triangle begins:
    0;
    0,       6;
    0,     260,      20720;
    6,    5112,    1223136,      257706024;
   48,   81876,   67769552,    54278580036,    44900438149488;
  260, 1223396, 3731753700, 11681058472672, 38403264917970196, 131160169581733489616;
  ...
		

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Main diagonal is A376824.

Programs

  • PARI
    T(n,m)=my(k=4); k!*sumdiv(n, d, sumdiv(m, e, eulerphi(d) * eulerphi(e) * stirling(n*m/lcm(d,e), k, 2) ))/(n*m) \\ Andrew Howroyd, Oct 05 2024

Formula

T(n,k) = (Q!/(n*k))*(Sum_{d|n} Sum_{f|k} phi(d) phi(f) S(gcd(d,f)*(n/d)*(k/f), Q)) with Q=4 and S(n,k) Stirling numbers of the second kind.
T(n,k) = A184277(n,k) - 4*A184284(n,k) + 6*A184271(n,k) - 4. - Andrew Howroyd, Oct 05 2024

A184272 Number of distinct n X n toroidal 0..3 arrays.

Original entry on oeis.org

4, 76, 29184, 268447936, 45035996274688, 131176846752109387776, 6467605103205252048452583424, 5316911983139663492479919370381869056, 72172920362019897195243695442781187577923764224, 16069380442589902755419620923449655543228876820136712994816
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Crossrefs

Diagonal of A184277.

Programs

  • Mathematica
    T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*4^(n*k/LCM[c, d]), {d, Divisors[k]}], {c, Divisors[n]}]; a[n_] := T[n, n]; Array[a, 10] (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)

Extensions

Terms a(6) and beyond from Andrew Howroyd, Sep 27 2017

A184273 Number of distinct n X 2 toroidal 0..3 arrays.

Original entry on oeis.org

10, 76, 700, 8296, 104968, 1399176, 19175140, 268447816, 3817763740, 54975738736, 799645010860, 11728126132976, 173215372864600, 2573485530115576, 38430716856090160, 576460752706084936, 8680820741074491040, 131176846752106589576, 1988364834899715824380
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Crossrefs

Column 2 of A184277.

Programs

  • Mathematica
    T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*4^(n*k/LCM[c, d]), {d, Divisors[k]}], {c, Divisors[n]}]; a[n_] := T[n, 2]; Array[a, 20] (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)

Extensions

Terms a(13) and beyond from Andrew Howroyd, Sep 27 2017

A184274 Number of distinct n X 3 toroidal 0..3 arrays.

Original entry on oeis.org

24, 700, 29184, 1398500, 71582944, 3817765120, 209430787824, 11728124734500, 667199944873344, 38430716856090160, 2235968978631715024, 131176846748291651840, 7749524484709164817824, 460543169377106318541400, 27509778650786228522002432
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Crossrefs

Column 3 of A184277.

Programs

  • Mathematica
    T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*4^(n*k/LCM[c, d]), {d, Divisors[k]}], {c, Divisors[n]}]; a[n_] := T[n, 3]; Array[a, 15] (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)

Extensions

Terms a(9) and beyond from Andrew Howroyd, Sep 27 2017

A184275 Number of distinct n X 4 toroidal 0..3 arrays.

Original entry on oeis.org

70, 8296, 1398500, 268447936, 54975633976, 11728126132976, 2573485510942780, 576460752706101376, 131176846748288854980, 30223145490448192851232, 7033750223212787748164020, 1650586719047191292234702976, 390046338531762979375904093800
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Crossrefs

Column 4 of A184277.

Programs

  • Mathematica
    T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*4^(n*k/LCM[c, d]), {d, Divisors[k]}], {c, Divisors[n]}]; a[n_] := T[n, 4]; Array[a, 13] (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)

Extensions

Terms a(7) and beyond from Andrew Howroyd, Sep 27 2017

A184276 Number of distinct n X 5 toroidal 0..3 arrays.

Original entry on oeis.org

208, 104968, 71582944, 54975633976, 45035996274688, 38430716856090160, 33731189163354610720, 30223145490393217217464, 27509778650786228378836960, 25353012004564610547932704768, 23601349356976489220593165438048, 22153799929748597900945512768786000
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Crossrefs

Column 5 of A184277.

Programs

  • Mathematica
    T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*4^(n*k/LCM[c, d]), {d, Divisors[k]}], {c, Divisors[n]}]; a[n_] := T[n, 5]; Array[a, 12] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
  • PARI
    a(n) = my(k=5); (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 4^(n*k/lcm(c, d)))); \\ Michel Marcus, Nov 01 2017

Extensions

Terms a(6) and beyond from Andrew Howroyd, Sep 27 2017
Showing 1-7 of 7 results.