cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A184284 Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..2 arrays.

Original entry on oeis.org

3, 6, 6, 11, 27, 11, 24, 130, 130, 24, 51, 855, 2211, 855, 51, 130, 5934, 44368, 44368, 5934, 130, 315, 44487, 956635, 2691711, 956635, 44487, 315, 834, 341802, 21524790, 174342216, 174342216, 21524790, 341802, 834, 2195, 2691675, 498112275
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Examples

			Table starts
     3        6          11           24            51           130
     6       27         130          855          5934         44487
    11      130        2211        44368        956635      21524790
    24      855       44368      2691711     174342216   11767964475
    51     5934      956635    174342216   33891544611 6863038218842
   130    44487    21524790  11767964475 6863038218842
   315   341802   498112275 817028472960
   834  2691675 11767920118
  2195 21524542
  5934
		

Crossrefs

Main diagonal is A184278.
Cf. A184271, A184277, A184288, A184291, A184331, A184294 (0..1, 0..3 etc.).

Programs

  • Mathematica
    T[n_, k_] := (1/(n*k))*Sum[EulerPhi[c]*EulerPhi[d]*3^(n*k/LCM[c, d]), {c, Divisors[n]}, {d, Divisors[k]}]; Table[T[n-k+1, k], {n, 1, 9}, {k, 1, n}] // Flatten (*Jean-François Alcover, Oct 07 2017, after Andrew Howroyd *)
  • PARI
    T(n, k) = (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 3^(n*k/lcm(c,d)))); \\ Andrew Howroyd, Sep 27 2017

Formula

T(n,k) = (1/(n*k)) * Sum_{c|n} Sum_{d|k} phi(c) * phi(d) * 3^(n*k/lcm(c,d)). - Andrew Howroyd, Sep 27 2017

A184286 Number of distinct n X 3 toroidal 0..4 arrays.

Original entry on oeis.org

45, 2635, 217125, 20346485, 2034505661, 211927741375, 22706531350485, 2483526875847735, 275947429516276125, 31044085821533856483, 3527737025058633700325, 404219867454740790585125, 46640753937073243032602205, 5413658939124584198288696455
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Crossrefs

Column 3 of A184288.

Programs

  • Mathematica
    T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*5^(n*k/LCM[c, d]), {d, Divisors[k]}], {c, Divisors[n]}]; a[n_] := T[n, 3]; Array[a, 14] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
  • PARI
    a(n) = my(k=3); (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 5^(n*k/lcm(c, d)))); \\ Michel Marcus, Nov 01 2017

Extensions

Terms a(8) and beyond from Andrew Howroyd, Sep 27 2017

A184287 Number of distinct n X 4 toroidal 0..4 arrays.

Original entry on oeis.org

165, 49075, 20346485, 9536816875, 4768372070757, 2483526896194175, 1330460821097243445, 727595761432647851875, 404219867454740749892485, 227373675443239212037148635, 129189588320018269798974609525, 74014868308343773086872161914375
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Crossrefs

Column 4 of A184288.

Programs

  • Mathematica
    T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*5^(n*k/LCM[c, d]), {d, Divisors[k]}], {c, Divisors[n]}]; a[n_] := T[n, 4]; Array[a, 12] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
  • PARI
    a(n) = my(k=4); (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 5^(n*k/lcm(c, d)))); \\ Michel Marcus, Nov 01 2017

Extensions

Terms a(6) and beyond from Andrew Howroyd, Sep 27 2017

A184285 Number of distinct n X 2 toroidal 0..4 arrays.

Original entry on oeis.org

15, 175, 2635, 49075, 976887, 20349075, 435970995, 9536816575, 211927736135, 4768373047015, 108372083629275, 2483526896194175, 57312158484825735, 1330460821533203275, 31044085821533856483, 727595761432647754075, 17119900268689323874095
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Crossrefs

Column 2 of A184288.

Programs

  • Mathematica
    T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*5^(n*k/LCM[c, d]), {d, Divisors[k]}], {c, Divisors[n]}]; a[n_] := T[n, 2]; Array[a, 17] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
  • PARI
    a(n) = my(k=2); (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 5^(n*k/lcm(c, d)))); \\ Michel Marcus, Nov 01 2017

Extensions

Terms a(12) and beyond from Andrew Howroyd, Sep 27 2017
Showing 1-4 of 4 results.