cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A184284 Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..2 arrays.

Original entry on oeis.org

3, 6, 6, 11, 27, 11, 24, 130, 130, 24, 51, 855, 2211, 855, 51, 130, 5934, 44368, 44368, 5934, 130, 315, 44487, 956635, 2691711, 956635, 44487, 315, 834, 341802, 21524790, 174342216, 174342216, 21524790, 341802, 834, 2195, 2691675, 498112275
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Examples

			Table starts
     3        6          11           24            51           130
     6       27         130          855          5934         44487
    11      130        2211        44368        956635      21524790
    24      855       44368      2691711     174342216   11767964475
    51     5934      956635    174342216   33891544611 6863038218842
   130    44487    21524790  11767964475 6863038218842
   315   341802   498112275 817028472960
   834  2691675 11767920118
  2195 21524542
  5934
		

Crossrefs

Main diagonal is A184278.
Cf. A184271, A184277, A184288, A184291, A184331, A184294 (0..1, 0..3 etc.).

Programs

  • Mathematica
    T[n_, k_] := (1/(n*k))*Sum[EulerPhi[c]*EulerPhi[d]*3^(n*k/LCM[c, d]), {c, Divisors[n]}, {d, Divisors[k]}]; Table[T[n-k+1, k], {n, 1, 9}, {k, 1, n}] // Flatten (*Jean-François Alcover, Oct 07 2017, after Andrew Howroyd *)
  • PARI
    T(n, k) = (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 3^(n*k/lcm(c,d)))); \\ Andrew Howroyd, Sep 27 2017

Formula

T(n,k) = (1/(n*k)) * Sum_{c|n} Sum_{d|k} phi(c) * phi(d) * 3^(n*k/lcm(c,d)). - Andrew Howroyd, Sep 27 2017

A054627 Number of n-bead necklaces with 8 colors.

Original entry on oeis.org

1, 8, 36, 176, 1044, 6560, 43800, 299600, 2097684, 14913200, 107377488, 780903152, 5726645688, 42288908768, 314146329192, 2345624810432, 17592187093524, 132458812569728, 1000799924679192, 7585009898729264, 57646075284033552, 439208192231379680
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Examples

			G.f. = 1 + 8*x + 36*x^2 + 176*x^3 + 1044*x^4 + 6560*x^5 + 43800*x^6 + ...
		

Crossrefs

Column 8 of A075195.
Column k=1 of A184294.
Cf. A054615.

Programs

  • Maple
    with(combstruct):A:=[N,{N=Cycle(Union(Z$8))},unlabeled]: seq(count(A,size=n),n=0..20); # Zerinvary Lajos, Dec 05 2007
  • Mathematica
    mx=40; CoefficientList[Series[1-Sum[EulerPhi[i] Log[1-8*x^i]/i, {i, 1, mx}], {x, 0, mx}], x] (* Herbert Kociemba, Nov 02 2016 *)
    k=8; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/n, {n, 1, 30}], 1] (* Robert A. Russell, Sep 21 2018 *)
  • PARI
    a(n)=if(n==0, 1, 1/n*sumdiv(n, d, eulerphi(d)*8^(n/d))); \\ Altug Alkan, Sep 21 2018

Formula

a(n) = (1/n)*Sum_{d|n} phi(d)*8^(n/d), n > 0.
G.f.: 1 - Sum_{n>=1} phi(n)*log(1 - 8*x^n)/n. - Herbert Kociemba, Nov 02 2016
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} 8^gcd(n,k). - Ilya Gutkovskiy, Apr 17 2021

Extensions

Edited by Christian G. Bower, Sep 07 2002
a(0) corrected by Herbert Kociemba, Nov 02 2016

A184292 Number of distinct n X 2 toroidal 0..7 arrays.

Original entry on oeis.org

36, 1072, 43800, 2098720, 107377488, 5726689312, 314146329192, 17592189191200, 1000799924679192, 57646075391404480, 3353953468337642808, 196765270128159928000, 11624286727084886518896, 690814754065973604816352, 41264667976180515380660448
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Crossrefs

Column 2 of A184294.

Extensions

Terms a(9) and beyond from Andrew Howroyd, Sep 27 2017

A184293 Number of distinct n X 3 toroidal 0..7 arrays.

Original entry on oeis.org

176, 43800, 14913536, 5726645688, 2345624810432, 1000799924766720, 439208192231379680, 196765270122433282488, 89550060712194793450496, 41264667976180515380660448, 19206827276185293962591862944, 9014404268289631799947348789248
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2011

Keywords

Crossrefs

Column 3 of A184294.

Extensions

Terms a(6) and beyond from Andrew Howroyd, Sep 27 2017
Showing 1-4 of 4 results.