A295223
Number of tilings of the n X n torus, using diagonal lines to connect the gridpoints.
Original entry on oeis.org
1, 4, 18, 669, 170440, 238773358, 1436110601256, 36028800332480074, 3731252530927004638384, 1584563250286480205777197264, 2746338834266357074512496613490144, 19358285762613388151183577985346072926384, 553468075675608205710323628035216140349636855680
Offset: 1
For n = 3, the following four tilings are considered equivalent:
*---*->-+---+ +---+->-*---* *---*->-+---+ +---+->-+---+
| / | \ | \ | | / | / | \ | | \ | / | / | | / | \ | \ |
*---*---+---+ +---+---*---* *---*---+---+ *---*---+---+
^ / | / | \ ^ = ^ / | \ | \ ^ = ^ \ | / | \ ^ = ^ \ | / | / ^
+---+---+---+ +---+---+---+ +---+---+---+ *---*---+---+
| \ | / | / | | \ | \ | / | | / | \ | \ | | \ | / | \ |
+---+->-+---+ +---+->-+---+ +---+->-+---+ +---+->-+---+
The transformations are horizontal reflection, shifting to the right, and shifting down.
-
a[n_] := 1/(8*n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d])]]]] + If[OddQ[n], n^2*2^((n^2 + 1)/2), n^2/4 (3*2^(n^2/2) + 2^((n^2 + 4)/2))] + 2*If[EvenQ[n], n/2*DivisorSum[n, Function[c, EulerPhi[c] (2^(n^2/LCM[2, c]) + If[OddQ[c], 0, 2^(n^2/c)])]], n*DivisorSum[n, Function[c, EulerPhi[c]*If[OddQ[c], 0, 2^(n^2/c)]]]] + If[OddQ[n], 0, n^2 (2^(n^2/4))] + 2*n*DivisorSum[n, Function[d, EulerPhi[d]*Which[OddQ[d], 2^((n^2 + n)/(2 d)), EvenQ[d], 2^(n^2/(2 d))]]])
A367533
The number of ways of tiling the n X n torus up to the symmetries of the square by a tile that is fixed under both horizontal and vertical reflection, but not diagonal reflection.
Original entry on oeis.org
1, 4, 18, 733, 170440, 239035502, 1436110601256, 36028815364865610, 3731252530927004638384, 1584563250299991004659308752, 2746338834266357074512496613490144, 19358285762613388346374725943958077888688, 553468075675608205710323628035216140349636855680
Offset: 1
- Peter Kagey, Illustration of a(3)=18
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, pp. A-21, A-22.
-
A367533[n_] := 1/(8 n^2) * (DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d])]]]] + If[OddQ[n], n^2*2^((n^2 + 1)/2), n^2/4 (3*2^(n^2/2) + 2^((n^2 + 4)/2))] + 2*If[EvenQ[n], n/2*DivisorSum[n, Function[c, EulerPhi[c] (2^(n*n/LCM[2, c]) + 2^((n - 2)*n/LCM[2, c])*2^(2 n/c))]], n*DivisorSum[n, Function[c, EulerPhi[c] (2^((n - 1)*n/LCM[2, c])*2^(n/c))]]] + 2*If[OddQ[n], 0, n^2 2^(n^2/4 - 1)] + 2*n*DivisorSum[n, Function[d, EulerPhi[d]*Which[OddQ[d], 0, EvenQ[d], 2^(n^2/(2d))]]])
A367534
The number of ways of tiling the n X n torus up to the symmetries of the square by a tile that is fixed under 90-degree rotation but not reflection.
Original entry on oeis.org
1, 4, 14, 613, 168832, 238686222, 1436101016320, 36028798185029194, 3731252529949661491712, 1584563250285579485868500176, 2746338834266355397535763176765440, 19358285762613388144887089341554236250288, 553468075675608205710276014956782089461163991040
Offset: 1
- Peter Kagey, Illustration of a(3)=14
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, pp. A-21, A-22.
-
A367534[n_] := 1/(8 n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d])]]]] + If[OddQ[n], n^2 2^((n^2 + 1)/2), n^2/4 (3*2^(n^2/2) + 2^((n^2 + 4)/2))] + 2*If[EvenQ[n], n/2*DivisorSum[n, Function[c, EulerPhi[ c] (2^(n*n/LCM[2, c]) + 2^((n - 2)*n/LCM[2, c]) If[OddQ[c], 0, 2^(2 n/c)])]], n*DivisorSum[n, Function[c, EulerPhi[ c] (2^((n - 1)*n/LCM[2, c]) If[OddQ[c], 0, 2^(n/c)])]]] + 2*If[OddQ[n], n^2 2^((n^2 + 3)/4), n^2/2 (2^(n^2/4) + 2^(n^2/4 + 2))] + 2*n*DivisorSum[n, Function[d, EulerPhi[d]*Which[OddQ[d], 0, EvenQ[d], 2^(n^2/(2d))]]])
A367535
The number of ways of tiling the n X n torus up to the symmetries of the square by a tile that is fixed under horizontal reflection but no other symmetries of the square.
Original entry on oeis.org
1, 16, 3692, 33570410, 5629501212064, 16397105856182791856, 808450637900676611412052288, 664613997892457939442293683754387488, 9021615045252487149405529092893182593313188608, 2008672555323737844427452615613431716686417747867226446336
Offset: 1
- Peter Kagey, Illustration of a(2)=16
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, pp. A-21, A-22.
-
A367535[n_] := 1/(8 n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 4^(n^2/LCM[c, d])]]]] +If[OddQ[n], 0, n^2 (3*2^(n^2 - 2) + 2^(n^2/2)) ] +2*If[EvenQ[n], n/2*DivisorSum[n, Function[c, EulerPhi[c] (4^(n*n/LCM[2, c]) + 4^((n - 2)*n/LCM[2, c]) If[OddQ[c], 2, 4]^(2 n/c))]], n*DivisorSum[n, Function[c, EulerPhi[c] (4^((n - 1)*n/LCM[2, c]) If[OddQ[c], 2, 4]^(n/c))]]] +n*DivisorSum[n, Function[d, EulerPhi[d]*Which[OddQ[d], 0, EvenQ[d], 2^(n^2/d + 1)]]])
A368137
Number of ways of tiling the n X n torus up to the symmetries of the square by a tile that is fixed under 180-degree rotation.
Original entry on oeis.org
1, 23, 3776, 33601130, 5629507922944, 16397105889110874288, 808450637900797243544928256, 664613997892457948377435344457451552, 9021615045252487149406066393257455761827823616, 2008672555323737844427452616231411384297679581096869206528
Offset: 1
-
A368137[n_] := 1/(8 n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 4^(n^2/LCM[c, d])]]]] + n^2*If[EvenQ[n], 19*2^(n^2 - 2) + 2^(n^2/2), 2^(n^2 + 1)] + n*If[EvenQ[n], DivisorSum[n, Function[d, EulerPhi[ d] (If[EvenQ[d], 2 (2^(n^2/d) + 4^(n^2/d)), 2^(n^2/d)])]], DivisorSum[n, Function[d, EulerPhi[d] (If[EvenQ[d], 2 (2^(n^2/d) + 4^(n^2/d)), 0])]]])
A368138
Number of ways of tiling the n X n torus up to the symmetries of the square by an asymmetric tile.
Original entry on oeis.org
1, 154, 1864192, 2199026796168, 188894659314785812480, 1126800533536206914843196839296, 455117248949604553908892209645884928950272, 12259964326927110866866776228808161337250421224373748224, 21812926725659065797324660502998994022561529591086874194578215566049280
Offset: 1
- Dan Davis, On a Tiling Scheme from M. C. Escher, Electron. J. Combin. 4(2) (1996), #R23.
- Peter Kagey, Illustration of a(2)=154
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, p. A-23.
-
A368138[n_] := 1/(8n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 8^(n^2/LCM[c, d])]]]] + If[EvenQ[n], n^2 (3/4*8^(n^2/2) + 8^(n^2/4)) + n*DivisorSum[n, Function[c, EulerPhi[c] (If[EvenQ[c], 2*8^(n^2/c), 8^(n^2/(2 c))])]], 0] + 2*n*DivisorSum[n, Function[d, EulerPhi[d]*If[EvenQ[d], 8^(n^2/(2 d)), 0]]])
A255015
Number of toroidal n X n binary arrays, allowing rotation of rows and/or columns as well as matrix transposition.
Original entry on oeis.org
1, 2, 6, 44, 2209, 674384, 954623404, 5744406453840, 144115192471496836, 14925010120653819583840, 6338253001142965335834871200, 10985355337065423791175013899922368, 77433143050453552587418968170813573149024
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..57
- S. N. Ethier and Jiyeon Lee, Counting toroidal binary arrays, II, arXiv:1502.03792v1 [math.CO], Feb 12, 2015 and J. Int. Seq. 18 (2015) # 15.8.3.
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023. See p. 3.
- Wikipedia, Polya enumeration theorem.
Cf.
A184271 (number of m X n binary arrays allowing rotation of rows/columns),
A179043 (main diagonal of
A184271),
A222188 (number of m X n binary arrays allowing rotation/reflection of rows/columns),
A209251 (main diagonal of
A222188),
A255016 (number of n X n binary arrays allowing rotation/reflection of rows/columns as well as matrix transposition).
-
a[n_] := (2 n^2)^(-1) Sum[If[Mod[n, c] == 0, Sum[If[Mod[n, d] == 0, EulerPhi[c] EulerPhi[d] 2^(n^2/ LCM[c, d]), 0], {d, 1, n}], 0], {c, 1, n}] + (2 n)^(-1) Sum[If[Mod[n, d] == 0, EulerPhi[d] 2^(n (n + d - 2 IntegerPart[d/2])/(2 d)), 0], {d, 1, n}];
A367536
Number of ways of tiling the n X n torus up to the symmetries of the square by a tile that is fixed under matrix transposition but no other symmetries.
Original entry on oeis.org
1, 17, 3692, 33572458, 5629501212064, 16397105857614447792, 808450637900676611412052288, 664613997892457939730524059906099232, 9021615045252487149405529092893182593313188608, 2008672555323737844427452615629277349189270615385935288832
Offset: 1
- Peter Kagey, Illustration of a(2)=17
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, pp. A-21, A-23.
- Eric Weisstein's World of Mathematics, Truchet Tiling
-
A367536[n_] := 1/(8n^2) (DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 4^(n^2/LCM[c, d])]]]] +If[OddQ[n],n*DivisorSum[n, Function[c, EulerPhi[c] 2^(n^2/c + 1)]],n*DivisorSum[n, Function[c, EulerPhi[c] (4^(n^2/LCM[2, c]) + 2^(n^2/c + 1) + If[OddQ[c], 0, 4^(n^2/c)])]] + n^2 (3*2^(n^2 - 2) + 2^(n^2/2))])
A364794
Number of distinct binary arrays of size n X n with respect to isometric transformations.
Original entry on oeis.org
1, 2, 6, 86, 7626, 3956996, 8326366368, 69277957195904, 2287898999182608384, 301053169143557925650432, 158147142250171927345054089216, 331982638848895606930198405868158976, 2786232352655643085145552249123037486514176
Offset: 0
For n = 2, the a(2) = 6 distinct binary arrays are
OO XO XX XO XX XX
OO OO OO OX XO XX
For n = 4
OOXX OOXO
OXXO is considered equivalent to XXXX
OOXO OOOX
OOXO OOOO
because we can rotate the bounding box of the Xs 90 degrees clockwise and place it back into the array as given above.
Showing 1-9 of 9 results.
Comments