cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A255016 Number of toroidal n X n binary arrays, allowing rotation and/or reflection of rows and/or columns as well as matrix transposition.

Original entry on oeis.org

1, 2, 6, 26, 805, 172112, 239123150, 1436120190288, 36028817512382026, 3731252531904348833632, 1584563250300891724601560272, 2746338834266358751489231123956672, 19358285762613388352671214587818634041520
Offset: 0

Views

Author

Jiyeon Lee, Feb 12 2015

Keywords

Crossrefs

Cf. A184271 (number of m X n binary arrays allowing rotation of rows/columns), A179043 (main diagonal of A184271), A222188 (number of m X n binary arrays allowing rotation/reflection of rows/columns), A209251 (main diagonal of A222188), A255015 (number of n X n binary arrays allowing rotation of rows/columns as well as matrix transposition).
Cf. A054247.

Programs

  • Mathematica
    a[n_] := (8 n^2)^(-1) Sum[If[Mod[n, c] == 0, Sum[If[Mod[n, d] == 0, EulerPhi[c] EulerPhi[d] 2^(n^2/ LCM[c, d]), 0], {d, 1, n}], 0], {c, 1, n}] + (4 n)^(-1) Sum[If[Mod[n, d] == 0, EulerPhi[d] 2^(n^2/d), 0], {d, 1, n}] + If[Mod[n, 2] == 1, (4 n)^(-1) Sum[If[Mod[n, d] == 0 && Mod[d, 2] == 1, EulerPhi[d] (2^(n (n + 1)/(2 d)) - 2^(n^2/d)), 0], {d, 1, n}],(8 n)^(-1) Sum[If[Mod[n, d] == 0 && Mod[d, 2] == 1, EulerPhi[d] (2^(n^2/(2 d)) + 2^(n (n + 2)/(2 d)) - 2 2^(n^2/d)), 0], {d, 1, n}]] + (1/2) If[Mod[n, 2] == 1, 2^((n^2 - 3)/2), 7 2^(n^2/2 - 4)] + (4 n)^(-1) Sum[If[Mod[n, d] == 0, EulerPhi[d] 2^(n (n + d - 2 IntegerPart[d/2])/(2 d)), 0], {d, 1, n}] + If[Mod[n, 2] == 1, 2^((n^2 - 5)/4), 5 2^(n^2/4 - 3)];

Extensions

a(0)=1 from Alois P. Heinz, Feb 19 2015

A367530 The number of ways of tiling the n X n torus up to matrix transposition by a tile that is asymmetric with respect to matrix transposition.

Original entry on oeis.org

1, 4, 32, 2081, 671104, 954448620, 5744387279872, 144115188176529540, 14925010118699132241920, 6338253001141163895983922592, 10985355337065420437221545952731136, 77433143050453552574825990883161180320096, 2213872302702432822841084717014014514981767643136
Offset: 1

Views

Author

Peter Kagey, Dec 13 2023

Keywords

Comments

The n X n torus is an n X n grid where two grids are considered the same if one can reach the other by cyclic shifting of rows and columns.

Crossrefs

Programs

  • Mathematica
    A367530[n_] := 1/(2n^2) (DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d])]]]] + n*DivisorSum[n, Function[d, EulerPhi[d]*Which[OddQ[d], 0, EvenQ[d], 2^(n^2/(2 d))]]])
Showing 1-2 of 2 results.