cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A295229 Number of tilings of the n X n grid, using diagonal lines to connect the grid points.

Original entry on oeis.org

1, 6, 84, 8548, 4203520, 8590557312, 70368815480832, 2305843028004192256, 302231454912728264605696, 158456325028538104598816096256, 332306998946228986960926214931349504, 2787593149816327892769293535238052808491008
Offset: 1

Views

Author

Peter Kagey, Nov 18 2017

Keywords

Comments

The grids are counted up to reflection and rotation.
a(n) <= A295223(n).

Examples

			For n = 2, the a(2) = 6 tilings are:
//, \/, /\, \\, /\, and \/.
//  //  //  //  \/      /\
		

Crossrefs

Programs

  • Mathematica
    Array[(2^(#^2) + 2*2^(# (# + 1)/2) + If[EvenQ@ #, 3*2^(#^2/2) + 2*2^(#^2/4), 2^((#^2 + 1)/2)])/8 &, 12] (* Michael De Vlieger, Apr 12 2018 *)
  • PARI
    a(n) = (2^(n^2) + 2*2^(n*(n+1)/2) + if(n%2, 2^((n^2+1)/2), 3*2^(n^2/2) + 2*2^(n^2/4)))/8; \\ Andrew Howroyd, Nov 19 2017

Formula

From Andrew Howroyd, Nov 19 2017: (Start)
a(n) = (2^(n^2) + 2*2^(n*(n+1)/2) + 3*2^(n^2/2) + 2*2^(n^2/4)) / 8 for n even.
a(n) = (2^(n^2) + 2*2^(n*(n+1)/2) + 2^((n^2+1)/2)) / 8 for n odd. (End)

Extensions

a(5)-a(12) from Andrew Howroyd, Nov 19 2017

A367533 The number of ways of tiling the n X n torus up to the symmetries of the square by a tile that is fixed under both horizontal and vertical reflection, but not diagonal reflection.

Original entry on oeis.org

1, 4, 18, 733, 170440, 239035502, 1436110601256, 36028815364865610, 3731252530927004638384, 1584563250299991004659308752, 2746338834266357074512496613490144, 19358285762613388346374725943958077888688, 553468075675608205710323628035216140349636855680
Offset: 1

Views

Author

Peter Kagey, Dec 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A367533[n_] := 1/(8 n^2) * (DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d])]]]] + If[OddQ[n], n^2*2^((n^2 + 1)/2), n^2/4 (3*2^(n^2/2) + 2^((n^2 + 4)/2))] + 2*If[EvenQ[n], n/2*DivisorSum[n, Function[c, EulerPhi[c] (2^(n*n/LCM[2, c]) + 2^((n - 2)*n/LCM[2, c])*2^(2 n/c))]], n*DivisorSum[n, Function[c, EulerPhi[c] (2^((n - 1)*n/LCM[2, c])*2^(n/c))]]] + 2*If[OddQ[n], 0, n^2 2^(n^2/4 - 1)] + 2*n*DivisorSum[n, Function[d, EulerPhi[d]*Which[OddQ[d], 0, EvenQ[d], 2^(n^2/(2d))]]])

A367534 The number of ways of tiling the n X n torus up to the symmetries of the square by a tile that is fixed under 90-degree rotation but not reflection.

Original entry on oeis.org

1, 4, 14, 613, 168832, 238686222, 1436101016320, 36028798185029194, 3731252529949661491712, 1584563250285579485868500176, 2746338834266355397535763176765440, 19358285762613388144887089341554236250288, 553468075675608205710276014956782089461163991040
Offset: 1

Views

Author

Peter Kagey, Dec 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A367534[n_] := 1/(8 n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d])]]]] + If[OddQ[n], n^2 2^((n^2 + 1)/2), n^2/4 (3*2^(n^2/2) + 2^((n^2 + 4)/2))] + 2*If[EvenQ[n], n/2*DivisorSum[n, Function[c, EulerPhi[ c] (2^(n*n/LCM[2, c]) + 2^((n - 2)*n/LCM[2, c]) If[OddQ[c], 0, 2^(2 n/c)])]], n*DivisorSum[n, Function[c, EulerPhi[ c] (2^((n - 1)*n/LCM[2, c]) If[OddQ[c], 0, 2^(n/c)])]]] + 2*If[OddQ[n], n^2 2^((n^2 + 3)/4), n^2/2 (2^(n^2/4) + 2^(n^2/4 + 2))] + 2*n*DivisorSum[n, Function[d, EulerPhi[d]*Which[OddQ[d], 0, EvenQ[d], 2^(n^2/(2d))]]])

A367535 The number of ways of tiling the n X n torus up to the symmetries of the square by a tile that is fixed under horizontal reflection but no other symmetries of the square.

Original entry on oeis.org

1, 16, 3692, 33570410, 5629501212064, 16397105856182791856, 808450637900676611412052288, 664613997892457939442293683754387488, 9021615045252487149405529092893182593313188608, 2008672555323737844427452615613431716686417747867226446336
Offset: 1

Views

Author

Peter Kagey, Dec 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A367535[n_] := 1/(8 n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 4^(n^2/LCM[c, d])]]]] +If[OddQ[n], 0, n^2 (3*2^(n^2 - 2) + 2^(n^2/2)) ] +2*If[EvenQ[n], n/2*DivisorSum[n, Function[c, EulerPhi[c] (4^(n*n/LCM[2, c]) + 4^((n - 2)*n/LCM[2, c]) If[OddQ[c], 2, 4]^(2 n/c))]], n*DivisorSum[n, Function[c, EulerPhi[c] (4^((n - 1)*n/LCM[2, c]) If[OddQ[c], 2, 4]^(n/c))]]] +n*DivisorSum[n, Function[d, EulerPhi[d]*Which[OddQ[d], 0, EvenQ[d], 2^(n^2/d + 1)]]])

A368137 Number of ways of tiling the n X n torus up to the symmetries of the square by a tile that is fixed under 180-degree rotation.

Original entry on oeis.org

1, 23, 3776, 33601130, 5629507922944, 16397105889110874288, 808450637900797243544928256, 664613997892457948377435344457451552, 9021615045252487149406066393257455761827823616, 2008672555323737844427452616231411384297679581096869206528
Offset: 1

Views

Author

Peter Kagey, Dec 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A368137[n_] := 1/(8 n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 4^(n^2/LCM[c, d])]]]] + n^2*If[EvenQ[n], 19*2^(n^2 - 2) + 2^(n^2/2), 2^(n^2 + 1)] + n*If[EvenQ[n], DivisorSum[n, Function[d, EulerPhi[ d] (If[EvenQ[d], 2 (2^(n^2/d) + 4^(n^2/d)), 2^(n^2/d)])]], DivisorSum[n, Function[d, EulerPhi[d] (If[EvenQ[d], 2 (2^(n^2/d) + 4^(n^2/d)), 0])]]])

A368138 Number of ways of tiling the n X n torus up to the symmetries of the square by an asymmetric tile.

Original entry on oeis.org

1, 154, 1864192, 2199026796168, 188894659314785812480, 1126800533536206914843196839296, 455117248949604553908892209645884928950272, 12259964326927110866866776228808161337250421224373748224, 21812926725659065797324660502998994022561529591086874194578215566049280
Offset: 1

Views

Author

Peter Kagey, Dec 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A368138[n_] := 1/(8n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 8^(n^2/LCM[c, d])]]]] + If[EvenQ[n], n^2 (3/4*8^(n^2/2) + 8^(n^2/4)) + n*DivisorSum[n, Function[c, EulerPhi[c] (If[EvenQ[c], 2*8^(n^2/c), 8^(n^2/(2 c))])]], 0] + 2*n*DivisorSum[n, Function[d, EulerPhi[d]*If[EvenQ[d], 8^(n^2/(2 d)), 0]]])

A368139 Number of ways of tiling the n X n torus up to diagonal and antidiagonal reflection of the square by two tiles that are each fixed under both diagonal and antidiagonal reflection.

Original entry on oeis.org

2, 6, 36, 1282, 340880, 477513804, 2872221202512, 72057600262282324, 7462505061854009276768, 3169126500572875969052992416, 5492677668532714149024993226980288, 38716571525226776302072008065489884436832, 1106936151351216411420647256070432280699273711360
Offset: 1

Views

Author

Peter Kagey, Dec 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A368139[n_] := 1/(4n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d])]]]] + n^2*If[OddQ[n], 2^((n^2 + 1)/2), (7*2^(n^2/2 - 2))] + 2*n*DivisorSum[n, Function[d, EulerPhi[d]*If[EvenQ[d], 2^(n^2/(2 d)), 2^((n^2 + n)/(2d))]]])

A368140 Number of ways of tiling the n X n torus up to diagonal and antidiagonal reflection of the square by a tile that is fixed under only diagonal reflection.

Original entry on oeis.org

1, 4, 22, 1154, 337192, 477360876, 2872203226920, 72057597041056852, 7462505060326909791920, 3169126500571693774150807456, 5492677668532711895587506949961184, 38716571525226776294594927800946276718944, 1106936151351216411420589971585441310578379941760
Offset: 1

Views

Author

Peter Kagey, Dec 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A368140[n_] := 1/(4n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d])]]]] + n^2*If[EvenQ[n], (3*2^(n^2/2 - 2)), 0] + n*DivisorSum[n, Function[d, EulerPhi[d] If[EvenQ[d], 2^(n^2/(2 d) + 1), 2^((n^2 + n)/(2d))]]])

A367536 Number of ways of tiling the n X n torus up to the symmetries of the square by a tile that is fixed under matrix transposition but no other symmetries.

Original entry on oeis.org

1, 17, 3692, 33572458, 5629501212064, 16397105857614447792, 808450637900676611412052288, 664613997892457939730524059906099232, 9021615045252487149405529092893182593313188608, 2008672555323737844427452615629277349189270615385935288832
Offset: 1

Views

Author

Peter Kagey, Dec 13 2023

Keywords

Comments

A Truchet tile is an example of a tile that is fixed under matrix transposition but no other symmetries.

Crossrefs

Programs

  • Mathematica
    A367536[n_] := 1/(8n^2) (DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 4^(n^2/LCM[c, d])]]]] +If[OddQ[n],n*DivisorSum[n, Function[c, EulerPhi[c] 2^(n^2/c + 1)]],n*DivisorSum[n, Function[c, EulerPhi[c] (4^(n^2/LCM[2, c]) + 2^(n^2/c + 1) + If[OddQ[c], 0, 4^(n^2/c)])]] + n^2 (3*2^(n^2 - 2) + 2^(n^2/2))])
Showing 1-9 of 9 results.