A295229
Number of tilings of the n X n grid, using diagonal lines to connect the grid points.
Original entry on oeis.org
1, 6, 84, 8548, 4203520, 8590557312, 70368815480832, 2305843028004192256, 302231454912728264605696, 158456325028538104598816096256, 332306998946228986960926214931349504, 2787593149816327892769293535238052808491008
Offset: 1
For n = 2, the a(2) = 6 tilings are:
//, \/, /\, \\, /\, and \/.
// // // // \/ /\
-
Array[(2^(#^2) + 2*2^(# (# + 1)/2) + If[EvenQ@ #, 3*2^(#^2/2) + 2*2^(#^2/4), 2^((#^2 + 1)/2)])/8 &, 12] (* Michael De Vlieger, Apr 12 2018 *)
-
a(n) = (2^(n^2) + 2*2^(n*(n+1)/2) + if(n%2, 2^((n^2+1)/2), 3*2^(n^2/2) + 2*2^(n^2/4)))/8; \\ Andrew Howroyd, Nov 19 2017
A367533
The number of ways of tiling the n X n torus up to the symmetries of the square by a tile that is fixed under both horizontal and vertical reflection, but not diagonal reflection.
Original entry on oeis.org
1, 4, 18, 733, 170440, 239035502, 1436110601256, 36028815364865610, 3731252530927004638384, 1584563250299991004659308752, 2746338834266357074512496613490144, 19358285762613388346374725943958077888688, 553468075675608205710323628035216140349636855680
Offset: 1
- Peter Kagey, Illustration of a(3)=18
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, pp. A-21, A-22.
-
A367533[n_] := 1/(8 n^2) * (DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d])]]]] + If[OddQ[n], n^2*2^((n^2 + 1)/2), n^2/4 (3*2^(n^2/2) + 2^((n^2 + 4)/2))] + 2*If[EvenQ[n], n/2*DivisorSum[n, Function[c, EulerPhi[c] (2^(n*n/LCM[2, c]) + 2^((n - 2)*n/LCM[2, c])*2^(2 n/c))]], n*DivisorSum[n, Function[c, EulerPhi[c] (2^((n - 1)*n/LCM[2, c])*2^(n/c))]]] + 2*If[OddQ[n], 0, n^2 2^(n^2/4 - 1)] + 2*n*DivisorSum[n, Function[d, EulerPhi[d]*Which[OddQ[d], 0, EvenQ[d], 2^(n^2/(2d))]]])
A367534
The number of ways of tiling the n X n torus up to the symmetries of the square by a tile that is fixed under 90-degree rotation but not reflection.
Original entry on oeis.org
1, 4, 14, 613, 168832, 238686222, 1436101016320, 36028798185029194, 3731252529949661491712, 1584563250285579485868500176, 2746338834266355397535763176765440, 19358285762613388144887089341554236250288, 553468075675608205710276014956782089461163991040
Offset: 1
- Peter Kagey, Illustration of a(3)=14
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, pp. A-21, A-22.
-
A367534[n_] := 1/(8 n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d])]]]] + If[OddQ[n], n^2 2^((n^2 + 1)/2), n^2/4 (3*2^(n^2/2) + 2^((n^2 + 4)/2))] + 2*If[EvenQ[n], n/2*DivisorSum[n, Function[c, EulerPhi[ c] (2^(n*n/LCM[2, c]) + 2^((n - 2)*n/LCM[2, c]) If[OddQ[c], 0, 2^(2 n/c)])]], n*DivisorSum[n, Function[c, EulerPhi[ c] (2^((n - 1)*n/LCM[2, c]) If[OddQ[c], 0, 2^(n/c)])]]] + 2*If[OddQ[n], n^2 2^((n^2 + 3)/4), n^2/2 (2^(n^2/4) + 2^(n^2/4 + 2))] + 2*n*DivisorSum[n, Function[d, EulerPhi[d]*Which[OddQ[d], 0, EvenQ[d], 2^(n^2/(2d))]]])
A367535
The number of ways of tiling the n X n torus up to the symmetries of the square by a tile that is fixed under horizontal reflection but no other symmetries of the square.
Original entry on oeis.org
1, 16, 3692, 33570410, 5629501212064, 16397105856182791856, 808450637900676611412052288, 664613997892457939442293683754387488, 9021615045252487149405529092893182593313188608, 2008672555323737844427452615613431716686417747867226446336
Offset: 1
- Peter Kagey, Illustration of a(2)=16
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, pp. A-21, A-22.
-
A367535[n_] := 1/(8 n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 4^(n^2/LCM[c, d])]]]] +If[OddQ[n], 0, n^2 (3*2^(n^2 - 2) + 2^(n^2/2)) ] +2*If[EvenQ[n], n/2*DivisorSum[n, Function[c, EulerPhi[c] (4^(n*n/LCM[2, c]) + 4^((n - 2)*n/LCM[2, c]) If[OddQ[c], 2, 4]^(2 n/c))]], n*DivisorSum[n, Function[c, EulerPhi[c] (4^((n - 1)*n/LCM[2, c]) If[OddQ[c], 2, 4]^(n/c))]]] +n*DivisorSum[n, Function[d, EulerPhi[d]*Which[OddQ[d], 0, EvenQ[d], 2^(n^2/d + 1)]]])
A368137
Number of ways of tiling the n X n torus up to the symmetries of the square by a tile that is fixed under 180-degree rotation.
Original entry on oeis.org
1, 23, 3776, 33601130, 5629507922944, 16397105889110874288, 808450637900797243544928256, 664613997892457948377435344457451552, 9021615045252487149406066393257455761827823616, 2008672555323737844427452616231411384297679581096869206528
Offset: 1
-
A368137[n_] := 1/(8 n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 4^(n^2/LCM[c, d])]]]] + n^2*If[EvenQ[n], 19*2^(n^2 - 2) + 2^(n^2/2), 2^(n^2 + 1)] + n*If[EvenQ[n], DivisorSum[n, Function[d, EulerPhi[ d] (If[EvenQ[d], 2 (2^(n^2/d) + 4^(n^2/d)), 2^(n^2/d)])]], DivisorSum[n, Function[d, EulerPhi[d] (If[EvenQ[d], 2 (2^(n^2/d) + 4^(n^2/d)), 0])]]])
A368138
Number of ways of tiling the n X n torus up to the symmetries of the square by an asymmetric tile.
Original entry on oeis.org
1, 154, 1864192, 2199026796168, 188894659314785812480, 1126800533536206914843196839296, 455117248949604553908892209645884928950272, 12259964326927110866866776228808161337250421224373748224, 21812926725659065797324660502998994022561529591086874194578215566049280
Offset: 1
- Dan Davis, On a Tiling Scheme from M. C. Escher, Electron. J. Combin. 4(2) (1996), #R23.
- Peter Kagey, Illustration of a(2)=154
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, p. A-23.
-
A368138[n_] := 1/(8n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 8^(n^2/LCM[c, d])]]]] + If[EvenQ[n], n^2 (3/4*8^(n^2/2) + 8^(n^2/4)) + n*DivisorSum[n, Function[c, EulerPhi[c] (If[EvenQ[c], 2*8^(n^2/c), 8^(n^2/(2 c))])]], 0] + 2*n*DivisorSum[n, Function[d, EulerPhi[d]*If[EvenQ[d], 8^(n^2/(2 d)), 0]]])
A368139
Number of ways of tiling the n X n torus up to diagonal and antidiagonal reflection of the square by two tiles that are each fixed under both diagonal and antidiagonal reflection.
Original entry on oeis.org
2, 6, 36, 1282, 340880, 477513804, 2872221202512, 72057600262282324, 7462505061854009276768, 3169126500572875969052992416, 5492677668532714149024993226980288, 38716571525226776302072008065489884436832, 1106936151351216411420647256070432280699273711360
Offset: 1
- S. N. Ethier and Jiyeon Lee, Counting toroidal binary arrays, II, arXiv:1502.03792v1 [math.CO], Feb 12, 2015 and J. Int. Seq. 18 (2015).
- Peter Kagey, Illustration of a(3)=36
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, pp. A-21, A-23.
-
A368139[n_] := 1/(4n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d])]]]] + n^2*If[OddQ[n], 2^((n^2 + 1)/2), (7*2^(n^2/2 - 2))] + 2*n*DivisorSum[n, Function[d, EulerPhi[d]*If[EvenQ[d], 2^(n^2/(2 d)), 2^((n^2 + n)/(2d))]]])
A368140
Number of ways of tiling the n X n torus up to diagonal and antidiagonal reflection of the square by a tile that is fixed under only diagonal reflection.
Original entry on oeis.org
1, 4, 22, 1154, 337192, 477360876, 2872203226920, 72057597041056852, 7462505060326909791920, 3169126500571693774150807456, 5492677668532711895587506949961184, 38716571525226776294594927800946276718944, 1106936151351216411420589971585441310578379941760
Offset: 1
- Peter Kagey, Illustration of a(3)=22
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, pp. A-21, A-24.
-
A368140[n_] := 1/(4n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d])]]]] + n^2*If[EvenQ[n], (3*2^(n^2/2 - 2)), 0] + n*DivisorSum[n, Function[d, EulerPhi[d] If[EvenQ[d], 2^(n^2/(2 d) + 1), 2^((n^2 + n)/(2d))]]])
A367536
Number of ways of tiling the n X n torus up to the symmetries of the square by a tile that is fixed under matrix transposition but no other symmetries.
Original entry on oeis.org
1, 17, 3692, 33572458, 5629501212064, 16397105857614447792, 808450637900676611412052288, 664613997892457939730524059906099232, 9021615045252487149405529092893182593313188608, 2008672555323737844427452615629277349189270615385935288832
Offset: 1
- Peter Kagey, Illustration of a(2)=17
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023. See also J. Int. Seq., (2024) Vol. 27, Art. No. 24.6.1, pp. A-21, A-23.
- Eric Weisstein's World of Mathematics, Truchet Tiling
-
A367536[n_] := 1/(8n^2) (DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 4^(n^2/LCM[c, d])]]]] +If[OddQ[n],n*DivisorSum[n, Function[c, EulerPhi[c] 2^(n^2/c + 1)]],n*DivisorSum[n, Function[c, EulerPhi[c] (4^(n^2/LCM[2, c]) + 2^(n^2/c + 1) + If[OddQ[c], 0, 4^(n^2/c)])]] + n^2 (3*2^(n^2 - 2) + 2^(n^2/2))])
Showing 1-9 of 9 results.
Comments