cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A295223 Number of tilings of the n X n torus, using diagonal lines to connect the gridpoints.

Original entry on oeis.org

1, 4, 18, 669, 170440, 238773358, 1436110601256, 36028800332480074, 3731252530927004638384, 1584563250286480205777197264, 2746338834266357074512496613490144, 19358285762613388151183577985346072926384, 553468075675608205710323628035216140349636855680
Offset: 1

Views

Author

Peter Kagey, Nov 17 2017

Keywords

Examples

			For n = 3, the following four tilings are considered equivalent:
*---*->-+---+   +---+->-*---*   *---*->-+---+   +---+->-+---+
| / | \ | \ |   | / | / | \ |   | \ | / | / |   | / | \ | \ |
*---*---+---+   +---+---*---*   *---*---+---+   *---*---+---+
^ / | / | \ ^ = ^ / | \ | \ ^ = ^ \ | / | \ ^ = ^ \ | / | / ^
+---+---+---+   +---+---+---+   +---+---+---+   *---*---+---+
| \ | / | / |   | \ | \ | / |   | / | \ | \ |   | \ | / | \ |
+---+->-+---+   +---+->-+---+   +---+->-+---+   +---+->-+---+
The transformations are horizontal reflection, shifting to the right, and shifting down.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 1/(8*n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 2^(n^2/LCM[c, d])]]]] + If[OddQ[n], n^2*2^((n^2 + 1)/2), n^2/4 (3*2^(n^2/2) + 2^((n^2 + 4)/2))] + 2*If[EvenQ[n], n/2*DivisorSum[n, Function[c, EulerPhi[c] (2^(n^2/LCM[2, c]) + If[OddQ[c], 0, 2^(n^2/c)])]], n*DivisorSum[n, Function[c, EulerPhi[c]*If[OddQ[c], 0, 2^(n^2/c)]]]] + If[OddQ[n], 0, n^2 (2^(n^2/4))] + 2*n*DivisorSum[n, Function[d, EulerPhi[d]*Which[OddQ[d], 2^((n^2 + n)/(2 d)), EvenQ[d], 2^(n^2/(2 d))]]])

A367524 The number of ways of tiling the n X n grid up to the symmetries of the square by a tile that is fixed under horizontal reflection, but no other symmetries of the square.

Original entry on oeis.org

1, 39, 32896, 536895552, 140737496743936, 590295810384475521024, 39614081257132309534260330496, 42535295865117307939839354957685850112, 730750818665451459101843020821051317142553624576, 200867255532373784442745261543120694290360960529885344825344
Offset: 1

Views

Author

Peter Kagey, Dec 10 2023

Keywords

Comments

Also, this is the number ways of tiling the n X n grid up to the symmetries of the square by a tile that is fixed under 180-degree rotation, but no other symmetries of the square.

Crossrefs

Programs

  • Mathematica
    Table[{2^(4 m^2 - 4 m - 2) (2 + 2^(2 m - 1)^2), 2^(2 m^2 - 3) (2 + 3*4^m^2 + 64^m^2)}, {m, 1, 5}] // Flatten

Formula

a(2m-1) = 2^(4m^2 - 4m - 2)*(2 + 2^(2m-1)^2).
a(2m) = 2^(2m^2 - 3)*(2 + 3*4^m^2 + 64^m^2).

A367525 The number of ways of tiling the n X n grid up to the symmetries of the square by a tile that is not fixed under any of the symmetries of the square.

Original entry on oeis.org

1, 538, 16777216, 35184378381312, 4722366482869645213696, 40564819207303347603293977182208, 22300745198530623141535718272648361505980416, 784637716923335095479473677930668862955643627524327473152, 1766847064778384329583297500742918515827483896875618958121606201292619776
Offset: 1

Views

Author

Peter Kagey, Dec 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[{4096^(m^2 - m), 8^(m^2 - 1) (512^m^2 + 3*8^m^2 + 2)}, {m, 1, 5}] // Flatten

Formula

a(2m-1) = 4096^(m^2 - m).
a(2m) = 8^(m^2 - 1)*(512^m^2 + 3*8^m^2 + 2).

A367522 The number of ways of tiling the n X n grid up to the symmetries of the square by a tile that is fixed under both horizontal and vertical reflection, but not diagonal reflection.

Original entry on oeis.org

1, 4, 84, 8292, 4203520, 8590033024, 70368815480832, 2305843010824323072, 302231454912728264605696, 158456325028529097399561355264, 332306998946228986960926214931349504, 2787593149816327892693735671512138485071872, 93536104789177786765036453099565034406633831137280
Offset: 1

Views

Author

Peter Kagey, Nov 21 2023

Keywords

Comments

The a(2) = 4 tilings are
- - - - - | - |
- -, | -, - |, and | -.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[EvenQ[n], 2^(#^2 - 3)*(2 + 3*2^#^2 + 8^#^2) &[n/2], 4^(#^2 - 2 # - 1)*(4^# + 4^#^2 + 8^#) &[(n + 1)/2]]; Array[a, 13] (* Michael De Vlieger, Jul 06 2024 *)

Formula

a(2m-1) = 4^(m^2 - 2m - 1)*(4^m + 4^m^2 + 8^m).
a(2m) = 2^(m^2 - 3)*(2 + 3*2^m^2 + 8^m^2).

A367523 The number of ways of tiling the n X n grid up to the symmetries of the square by a tile that is fixed under 90-degree rotations, but not reflections.

Original entry on oeis.org

1, 4, 70, 8292, 4195360, 8590033024, 70368748374016, 2305843010824323072, 302231454903932172107776, 158456325028529097399561355264, 332306998946228968514182141758668800, 2787593149816327892693735671512138485071872, 93536104789177786765035834129545391718695404830720
Offset: 1

Views

Author

Peter Kagey, Dec 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[{2^(-2 + (-4 + n) n) (2^(n (2 + n)) + 2^(1 + 3 n) + 8^n^2), 2^(-3 + n^2) (2 + 3 2^n^2 + 8^n^2)}, {n, 1, 5}] // Flatten

Formula

a(2m-1) = 2^(m^2 - 4m - 2)*(2^(3m+1) + 2^(m^2+2m) + 8^m^2).
a(2m) = 2^(m^2 - 3)*(2 + 3*2^m^2 + 8^m^2) = A367522(2m).
Showing 1-5 of 5 results.