A184417 p^2 + (p+2)^2 - 1 where (p,p+2) is the n-th twin prime pair.
33, 73, 289, 649, 1801, 3529, 7201, 10369, 20809, 23329, 38089, 45001, 64801, 73729, 78409, 103969, 115201, 145801, 159049, 194689, 242209, 352801, 373249, 426889, 544969, 649801, 720001, 763849, 824329, 871201, 1312201, 1351369, 1371169, 1472329, 1555849, 2080801, 2130049, 2205001, 2255689, 2384929, 2654209
Offset: 1
Keywords
Examples
a(1) = prime(1)^2 + (prime(1)+2)^2 - 1 = 3^2 + (3+2)^2 - 1 = 33; a(2) = prime(2)^2 + (prime(2)+2)^2 - 1 = 5^2 + (5+2)^2 - 1 = 73; a(3) = prime(3)^2 + (prime(3)+2)^2 - 1 = 11^2 + (11+2)^2 - 1 = 289.
Programs
-
Mathematica
Total/@(Select[Partition[Prime[Range[500]],2,1],#[[2]]-#[[1]]==2&]^2)-1 (* Harvey P. Dale, Feb 24 2011 *)
Formula
a(n) = A063533(n) - 1.
Comments