cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184477 T(n,k)=1/6 the number of (n+2)X(k+2) 0..2 arrays with each 3X3 subblock containing one of one value, four of another, and four of the last.

Original entry on oeis.org

315, 1095, 1095, 3705, 2755, 3705, 12339, 7085, 7085, 12339, 45585, 19119, 14119, 19119, 45585, 161739, 62213, 30681, 30681, 62213, 161739, 559305, 200215, 86575, 53739, 86575, 200215, 559305, 2147931, 645837, 249953, 127689, 127689, 249953
Offset: 1

Views

Author

R. H. Hardin Jan 15 2011

Keywords

Comments

Table starts
......315.....1095.....3705....12339....45585..161739..559305.2147931..7836561
.....1095.....2755.....7085....19119....62213..200215..645837.2386807..8440325
.....3705.....7085....14119....30681....86575..249953..747735.2652785..9085231
....12339....19119....30681....53739...127689..322275..878625.2967411..9800745
....45585....62213....86575...127689...247879..520289.1219455.3727073.11454631
...161739...200215...249953...322275...520289..904411.1782585.4808779.13539521
...559305...645837...747735...878625..1219455.1782585.2909367
..2147931..2386807..2652785..2967411..3727073.4808779
..7836561..8440325..9085231..9800745.11454631
.27667251.29121087.30632409.32238603

Examples

			Some solutions with a(1,1)=0 for 5X4
..0..0..1..0....0..1..2..0....0..0..2..0....0..1..1..0....0..1..1..0
..0..1..1..2....0..2..0..0....0..2..0..0....0..1..0..0....0..1..0..0
..2..1..0..0....0..2..2..0....1..2..2..1....2..1..0..2....0..2..1..0
..1..0..0..1....0..2..1..0....0..0..2..0....1..1..0..1....1..0..1..1
..0..1..1..2....0..2..0..0....2..0..0..2....1..0..0..1....1..0..0..1
		

Formula

Empirical for columns 3 to at least 4: a(n)=6*a(n-1)-11*a(n-2)+129*a(n-3)-738*a(n-4)+1353*a(n-5)-6290*a(n-6)+33312*a(n-7)-61072*a(n-8)+155640*a(n-9)-733968*a(n-10)+1345608*a(n-11)-2177568*a(n-12)+8661600*a(n-13)-15879600*a(n-14)+18027792*a(n-15)-56197152*a(n-16)+103028112*a(n-17)-89177760*a(n-18)+197883648*a(n-19)-362786688*a(n-20)+256296960*a(n-21)-350479872*a(n-22)+642546432*a(n-23)-390790656*a(n-24)+241864704*a(n-25)-443418624*a(n-26)+241864704*a(n-27)