cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184517 Upper s-Wythoff sequence, where s=4n-2. Complement of A184516.

Original entry on oeis.org

3, 8, 14, 19, 24, 29, 35, 40, 45, 50, 55, 61, 66, 71, 76, 82, 87, 92, 97, 103, 108, 113, 118, 124, 129, 134, 139, 144, 150, 155, 160, 165, 171, 176, 181, 186, 192, 197, 202, 207, 213, 218, 223, 228, 234, 239, 244, 249, 254, 260, 265, 270, 275, 281, 286, 291, 296, 302, 307, 312, 317, 323, 328, 333, 338, 343, 349, 354, 359, 364, 370, 375, 380, 385, 391, 396, 401, 406, 412, 417, 422, 427, 432, 438, 443, 448, 453, 459, 464, 469, 474, 480, 485, 490, 495, 501, 506
Offset: 1

Views

Author

Clark Kimberling, Jan 16 2011

Keywords

Comments

See A184117 for the definition of lower and upper s-Wythoff sequences.

Crossrefs

Programs

  • Magma
    [Floor((3+Sqrt(5))*(n - 1/(1+Sqrt(5)))): n in [1..100]]; // G. C. Greubel, Nov 16 2018
    
  • Mathematica
    k = 4; r = 2; d = Sqrt[4 + k^2];
    a[n_] := Floor[(1/2) (d + 2 - k) (n + r/(d + 2))];
    b[n_] := Floor[(1/2) (d + 2 + k) (n - r/(d + 2))];
    Table[a[n], {n, 120}] (* A184516 *)
    Table[b[n], {n, 120}] (* A184517 *)
    (* alternate program *)
    Table[Ceiling[(2 n - 1) GoldenRatio^2], {n, 1, 120}] (* Jon Maiga, Nov 15 2018 *)
  • PARI
    vector(100, n, floor((3+sqrt(5))*(n - 1/(1+sqrt(5))))) \\ G. C. Greubel, Nov 16 2018
    
  • Sage
    [floor((3+sqrt(5))*(n - 1/(1+sqrt(5)))) for n in (1..100)] # G. C. Greubel, Nov 16 2018

Formula

a(n) = ceiling((2*n-1)*phi^2), where phi = A001622. - Jon Maiga, Nov 15 2018