A184532 Array, read by rows: T(n,h)=floor[1/{(h+n^3)^(1/3)}], where h=1,2,...,3n^2+3n and {}=fractional part.
3, 2, 1, 1, 1, 1, 12, 6, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 27, 13, 9, 7, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 48, 24, 16, 12, 9, 8, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 75, 37, 25, 18, 15, 12, 10, 9, 8, 7, 7, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1
Offset: 1
Examples
First 2 rows: 3, 2, 1, 1, 1, 1 12, 6, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Crossrefs
Programs
-
Mathematica
f[n_,h_]:=FractionalPart[(n^3+h)^(1/3)]; g[n_,h_]:=Floor[1/f[n,h]]; Table[Flatten[Table[g[n,h],{n,1,5},{h,1,3n^2+3n}]]] TableForm[Table[g[n,h],{n,1,5},{h,1,3n^2+3n}]]
Formula
T(n,h)=floor[1/{(h+n^3)^(1/3)}], where h=1,2,...,3n^2+3n and {}=fractional part.