A184534 a(n) = floor(1/{(4+n^3)^(1/3)}), where {}=fractional part.
1, 3, 7, 12, 18, 27, 36, 48, 60, 75, 90, 108, 126, 147, 168, 192, 216, 243, 270, 300, 330, 363, 396, 432, 468, 507, 546, 588, 630, 675, 720, 768, 816, 867, 918, 972, 1026, 1083, 1140, 1200, 1260, 1323, 1386, 1452, 1518, 1587, 1656, 1728, 1800, 1875, 1950, 2028, 2106, 2187, 2268, 2352, 2436, 2523, 2610, 2700, 2790, 2883, 2976, 3072, 3168, 3267, 3366, 3468, 3570, 3675, 3780, 3888, 3996, 4107, 4218, 4332, 4446, 4563, 4680, 4800, 4920, 5043, 5166, 5292, 5418, 5547, 5676, 5808
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Table[Floor[1/FractionalPart[(n^3 + 4)^(1/3)]], {n, 1, 120}]
-
PARI
for(n=1, 50, print1(floor(1/frac((4 + n^3)^(1/3))), ", ")) \\ G. C. Greubel, May 14 2017
Formula
a(n) = floor[1/{(4+n^3)^(1/3)}], where {}=fractional part.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
From Colin Barker, Oct 07 2012: (Start)
Empirical: a(n) = 3*(1 - (-1)^n + 4*n + 2*n^2)/8 for n>2.
Empirical G.f.: x*(x^6-2*x^5+x^4-x^2-x-1)/((x-1)^3*(x+1)).(End)