cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184534 a(n) = floor(1/{(4+n^3)^(1/3)}), where {}=fractional part.

Original entry on oeis.org

1, 3, 7, 12, 18, 27, 36, 48, 60, 75, 90, 108, 126, 147, 168, 192, 216, 243, 270, 300, 330, 363, 396, 432, 468, 507, 546, 588, 630, 675, 720, 768, 816, 867, 918, 972, 1026, 1083, 1140, 1200, 1260, 1323, 1386, 1452, 1518, 1587, 1656, 1728, 1800, 1875, 1950, 2028, 2106, 2187, 2268, 2352, 2436, 2523, 2610, 2700, 2790, 2883, 2976, 3072, 3168, 3267, 3366, 3468, 3570, 3675, 3780, 3888, 3996, 4107, 4218, 4332, 4446, 4563, 4680, 4800, 4920, 5043, 5166, 5292, 5418, 5547, 5676, 5808
Offset: 1

Views

Author

Clark Kimberling, Jan 16 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[1/FractionalPart[(n^3 + 4)^(1/3)]], {n, 1, 120}]
  • PARI
    for(n=1, 50, print1(floor(1/frac((4 + n^3)^(1/3))), ", ")) \\ G. C. Greubel, May 14 2017

Formula

a(n) = floor[1/{(4+n^3)^(1/3)}], where {}=fractional part.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
From Colin Barker, Oct 07 2012: (Start)
Empirical: a(n) = 3*(1 - (-1)^n + 4*n + 2*n^2)/8 for n>2.
Empirical G.f.: x*(x^6-2*x^5+x^4-x^2-x-1)/((x-1)^3*(x+1)).(End)