A184538 Floor[1/{(3+n^4)^(1/4)}], where {}=fractional part.
2, 11, 36, 85, 166, 288, 457, 682, 972, 1333, 1774, 2304, 2929, 3658, 4500, 5461, 6550, 7776, 9145, 10666, 12348, 14197, 16222, 18432, 20833, 23434, 26244, 29269, 32518, 36000, 39721, 43690, 47916, 52405, 57166, 62208, 67537, 73162, 79092, 85333, 91894, 98784, 106009, 113578, 121500, 129781, 138430, 147456, 156865, 166666, 176868, 187477, 198502, 209952, 221833, 234154, 246924, 260149, 273838, 288000
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
p[n_]:=FractionalPart[(n^4+3)^(1/4)]; q[n_]:=Floor[1/p[n]]; Table[q[n],{n,1,80}]
Formula
a(n)=floor[1/{(3+n^4)^(1/4)}], where {}=fractional part.
Recurrence relation appears to be a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6).
Empirical G.f.: x*(x+1)*(x^6-3*x^5+3*x^4+6*x^2+3*x+2)/((x-1)^4*(x^2+x+1)). [Colin Barker, Sep 21 2012]