cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184538 Floor[1/{(3+n^4)^(1/4)}], where {}=fractional part.

Original entry on oeis.org

2, 11, 36, 85, 166, 288, 457, 682, 972, 1333, 1774, 2304, 2929, 3658, 4500, 5461, 6550, 7776, 9145, 10666, 12348, 14197, 16222, 18432, 20833, 23434, 26244, 29269, 32518, 36000, 39721, 43690, 47916, 52405, 57166, 62208, 67537, 73162, 79092, 85333, 91894, 98784, 106009, 113578, 121500, 129781, 138430, 147456, 156865, 166666, 176868, 187477, 198502, 209952, 221833, 234154, 246924, 260149, 273838, 288000
Offset: 1

Views

Author

Clark Kimberling, Jan 16 2011

Keywords

Crossrefs

Programs

  • Mathematica
    p[n_]:=FractionalPart[(n^4+3)^(1/4)];
    q[n_]:=Floor[1/p[n]];
    Table[q[n],{n,1,80}]

Formula

a(n)=floor[1/{(3+n^4)^(1/4)}], where {}=fractional part.
Recurrence relation appears to be a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6).
Empirical G.f.: x*(x+1)*(x^6-3*x^5+3*x^4+6*x^2+3*x+2)/((x-1)^4*(x^2+x+1)). [Colin Barker, Sep 21 2012]