A184623 a(n) = floor((n-h)*s+h), where s=2+sqrt(2) and h=-1/3; complement of A184622.
4, 7, 11, 14, 17, 21, 24, 28, 31, 34, 38, 41, 45, 48, 52, 55, 58, 62, 65, 69, 72, 75, 79, 82, 86, 89, 92, 96, 99, 103, 106, 110, 113, 116, 120, 123, 127, 130, 133, 137, 140, 144, 147, 151, 154, 157, 161, 164, 168, 171, 174, 178, 181, 185, 188, 192, 195, 198, 202, 205, 209, 212, 215, 219, 222, 226, 229, 232, 236, 239, 243, 246, 250, 253, 256, 260, 263, 267, 270, 273, 277, 280, 284, 287, 291, 294, 297, 301, 304, 308, 311, 314, 318, 321, 325, 328, 331, 335, 338, 342, 345, 349, 352, 355, 359, 362, 366, 369, 372, 376, 379, 383, 386, 390, 393, 396, 400
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[Floor((n+1/3)*(2+Sqrt(2)) - 1/3): n in [1..120]]; // G. C. Greubel, Aug 18 2018
-
Mathematica
r=2^(1/2); h=-1/3; s=r/(r-1); Table[Floor[n*r+h],{n,1,120}] (* A184622 *) Table[Floor[n*s+h-h*s],{n,1,120}] (* A184623 *)
-
PARI
vector(120, n, floor((n+1/3)*(2+sqrt(2)) - 1/3)) \\ G. C. Greubel, Aug 18 2018
Formula
a(n) = floor((n-h)*s+h), where s=2+sqrt(2) and h=-1/3.